Geochemical features of sulfides of the Aktash magnetite-polymetallic deposit, Western Karamazar, Tajikistan (LA-ICP-MS data)
U.A. Yatimov, V.V. Maslennikov, D.A. Artem’ev
UDK 553.064.32 (553.311.2) | https://doi.org/10.35597/2313-545X-2023-9-3-4 | Read PDF (RUS) |
The distribution of trace elements in sulfides from various ores of the Aktash magnetite-polymetallic deposit (Tajikistan) is studied using LA-ICP-MS method. Sulfides partly replace banded magnetite ores. Each sulfide type exhibits specific geochemical features. Galena from sulfide-magnetite ores contains the higher amount of elements of «high-temperature» association (Bi, Ag, Cu) than galena from pyroxene-sphalerite ores, which, in addition to Ag and Bi, also contains higher amount of elements of «medium-temperature» association (Se, Te, and Sb). Sphalerite from sulfide-magnetite and chlorite-pyrrhotite ores contains higher Fe, Cd and Mn amount than sphalerite from pyroxene-sphalerite ores, which is characterized by elevated Co and As contents. Pyrite is depleted in trace elements except for As, the content of which is maximum compared to other sulfides. The Ag, Se, Bi, Zn, Cd and Ni contents of chalcopyrite from chlorite-pyrrhotite ores are higher than in chalcopyrite from sulfide-magnetite and pyroxene-sphalerite ores. Chalcopyrite from pyroxene-sphalerite ores is characterized by elevated Pb, As, Ge, Te and Sb contents. Relatively high Co, Ni and Se contents are determined in pyrrhotite. In addition to Fe, Cu, Zn, Pb and Au, which form minerals in all types of ores, we suggest by-product extraction of following elements from complex sulfide-magnetite, chlorite-pyrrhotite and pyroxene-sphalerite ores (the Bi, Ag, Se and Te contents of galena and Cd content of sphalerite are shown in brackets): Bi (19520–24650 ppm), Ag (7907–9650 ppm), Se (397–606 ppm) and Te (276–
436 ppm) from galena concentrate and Cd (8525–27670 ppm) from sphalerite concentrate.
Keywords: geochemical features, trace elements, galena, sphalerite, pyrite, chalcopyrite, pyrrhotite, Aktash deposit, Kansai ore field, Western Karamazar.
Received 14.07.2023, accepted 21.09.2023
U.A. Yatimov, Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS,
Miass, Chelyabinsk Region, Russia; umed1990@list.ru
V.V. Maslennikov, Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS,
Miass, Chelyabinsk Region, Russia;
D.A. Artem’ev, Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS,
Miass, Chelyabinsk Region, Russia
- Auclair G., Fouquet Y., Bohn M. (1987) Distribution of selenium in high-temperature hydrothermal sulfide deposits at 13° North, East Pacific Rise. The Canadian Mineralogist, 25, 577–587.
- Badalov S.T. (1991) [Geochemical features of oreforming systems]. Tashkent, Fan, 144 p. (in Russian)
- Belousov V.A., Polotov V.S. (1981) [Report on the additional exploration of the lower horizons of the ore zone No. 9 of the Aktash deposit]. Kairakkum, Fondy Kayrakkumskoy GRE, 145 p. (in Russian)
- Butler I.B., Nesbitt R.W. (1999) Trace element distributions in the chalcopyrite wall of black smoker chimney: insights from laser ablationi nductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet. Sci. Lett., 167(3), 335–345.
- Cave B., Lilly R., Barovich K. (2020) Textural and geochemical analysis of chalcopyrite, galena and sphalerite across the Mount Isa Cu to Pb-Zn transition: Implications for a zoned Cu-Pb-Zn system. Ore Geology Reviews, 124, 103647.
- Cook N.J., Ciobanu C.L., Pring A., Skinner W., Shimizu M., Danyushevsky L., Saini-Eidukat B., Melcher F. (2009) Trace andminor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta, 73, 4761–4791
- Deditius A.P., Reich M., Kesler S.E., Utsunomiya S., Chryssoulis S.L., Walshe J., Ewing R.C. (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta, 140, 644–670.
- Dubrova I.V., Kashintseva E.N. (1965) [Distribution of impurity elements in some of the main minerals of the ores of the deposits of the Kansai ore field]. In: Geologiya svintsovo-tsinkovykh mestorozhdeniy Kansayskogo rudnogo polya [Geology of lead-zinc deposits of the Kansai ore field]. Moscow, Nauka, 115–126. (in Russian)
- Enikeeva M.V. (1959) [Galena from Southwestern Karamazar]. Zapiski Uzbekskogo otdeleniya VMO [Notes of the Uzbek branch of WMO], 13, 51–57. (in Russian)
- Fakhridinov T., Filev G.A. et al. (1974) [Report on the results of exploration work carried out in 1969–73. on the object «Detailed exploration of the Aktash deposit»]. Kairakkum, Fondy Kayrakkumskoy GRE,
165 p. (in Russian) - George L., Cook N., Crowe B., Ciobanu C. (2018) Trace elements in hydrothermal chalcopyrite. Mineralogical Magazine, 82(1), 59–88.
- George L., Cook N.J., Ciobanu C.L. (2015) Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. American Mineralogist, 100. 548–569.
- Godovikov A.A. (1966) [On impurities of silver, bismuth and antimony in galena]. Geologiya rudnykh mestorozhdeniy [Geology of ore deposits], 2, 59–66. (in Russian)
- Graham G.E., Kelley K.D., Slack J.F., Koenig A.E. (2009) Trace elements in Zn-Pb-Ag deposits and related stream sediments, Brooks Range Alaska, with implications for Tl as a pathfinder element. Geochemistry: Exploration, Environment, Analysis, 9, 19–37.
- Ivanov V.V. (1996) [Ecological geochemistry of elements. Book 3]. Moscow, Nedra, 352 p. (in Russian)
- Ivanov V.V. (1997) [Ecological geochemistry of elements. Book 5]. Moscow, Ecology, 576 p. (in Russian)
- Li G., Zhao Z., Wei J., Ulrich T. (2022) Trace element compositions of galena in an MVT deposit from the Sichuan-Yunnan-Guizhou metallogenic province, SW China: Constraints from LA-ICP-MS spot analysis and elemental mapping. Ore Geology Reviews, 105, 105123.
- Li Z., Ye L., Hu Y., Wei C., Huang Z., Yang Y., Danyushevsky L. (2020) Trace elements in sulfides from the Maozu Pb-Zn deposit, Yunnan Province, China: Implications for trace-element incorporation mechanisms and ore genesis. American Mineralogist, 105(11), 1734–1751.
- Lockington J.A., Cook N.J., Ciobanu C.L. (2014) Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineral. Mag, 108, 873–890.
- Malakhov I.A., Burmako I.L., Alekseev A.V. (2007) [Industrial types of metallic minerals]. Ekaterinburg, Izdatelstvo UGGU, 209 p. (in Russian)
- Maslennikov V.V., Maslennikova S.P., Large R.R., Danyushevsky L.V., Herrington R.J., Ayupova N.R., Zaykov V.V., Lein A.Yu., Tseluyko A.S., Melekestseva I.Yu., Tessalina S.G. (2017) Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, gray and clear smokers. Ore Geology Review, 85, 64–106.
- Maslennikov V.V., Melekestseva I.Yu., Maslennikova S.P. et al. (2016) [Differentiation of toxic elements under conditions of lithogenesis and technogenesis of VMS deposits]. Yekaterinburg, RIO UrO RAN, 368 p.
- Moiseeva M.I. (1969) [Mineralogy of ore deposits in the north-eastern part of the Kuraminsky Range and adjacent areas]. Tashkent, Fan, 204 p. (in Russian)
- Nechelyustov N.V., Popova N.N., Mintser E.F. (1961) [Distribution of impurity elements during hypogene mineral formation in lead-zinc and copper-molybdenum deposits of Karamazar]. Trudy IMGRE AN SSSR [Proceedings of the IMGRE Academy of Sciences of the USSR], 5, 3–42. (in Russian)
- Nenasheva S.N. (1975) [Experimental study of the nature of silver, antimony and bismuth impurities in galena]. Novosibirsk, Nauka, 124 p. (in Russian)
- Pattrick R.A.D., Mosselmans J.F.W., Charnock J.M. (1998) An x-ray absorption study of doped sphalerites. Eur. J. Mineral, 10, 239–249.
- Popov V.S. (1960) [Geochemistry of ores of the Central Kansai in Karamazar]. Uchenye zapiski Sredneaziatskogo instituta geologii i mineral’nogo syr’ia [Scientific notes of the Central Asian Institute of Geology and Mineral Resources], 3, 72–84. (in Russian)
- Rakhimov Sh.Kh. (1978) [Geological and structural conditions of localization of skarn-polymetallic deposits of the Karamazar]. Tashkent, Fan, 142 p. (in Russian).
- Reich M., Deditius A., Chryssoulis S., Li J.W., Ma C.Q., Parada M.A., et al. (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study. Geochim. Cosmochim. Acta, 104, 42–62.
- Safonov Y.G., Bortnikov N.S., Zlobina T.M., Chernyshev V.F., Dzainukov A.B., Prokof’ev, V.Yu. (2000) Polymetal (Ag, Pb, U, Cu, Bi, Zn, F) Adrasman–Kanimansur ore field (Tadzhikistan) and its ore-forming system. I: Geology, mineralogy, and structural conditions of the ore deposition, Geol. Ore Deposits, 42(3), 175–188.
- Sechevitsa A.M., Ivanov V.V., Ivanov V.N., Danilova N.P., Kondrashova O.V., Kuvshinov V.Ya., Tsibizova A.N. (1990) [Exploration and evaluation of complex deposits of non-ferrous metals]. Moscow, Nedra, 117 p.
- Shikhin Yu.S., Baikov V.N., Ishchenko E.N. Kuznetsov Zh.N., Mikhailov V.V., Pochinok A.A., Shekhtman P.A. (1972) [Geology and ore content of the ore region]. In: Geologiya i mineralnye kompleksy Zapadnogo Karamazara [Geology and mineral complexes of Western Karamazar]. Moscow, Nedra, 18–105.
- Strakhov N.M. (1962) [Fundamentals of the theory of lithogenesis]. Moscow, Akademiya nauk SSSR, 212 p.
- Tooth B., Etschmann B., Pokrovski G.S., Testemale D., Hazemann J.-L., Grundler P.V., Brugger J. (2013) Bismuth speciation in hydrothermal fluids: An X-ray absorption spectroscopy and solubility study. Geochim. Cosmochim. Acta, 101, 156–172.
- Vlasova M.I., Kotenev M.D., Matyash V.P., Myasnikov V.M. (1972) [Geology and ore content of the ore region]. In: Geologiya i mineralnye kompleksy Zapadnogo Karamazara [Geology and mineral complexes of Western Karamazar]. Moscow, Nedra, 192–229. (in Russian)
- Vol’fson F.I. (1951) [The structure and genesis of lead-zinc deposits of Western Karamazar]. Moscow, Izdatelstvo AN SSSR, 245 p. (in Russian)
- Wei C., Huang Z.L., Yan Z.F., Hu Y.S., Ye L. (2018) Trace element contents in sphalerite from the Nayongzhi Zn-Pb Deposit, Northwestern Guizhou, China. Minerals, 8(11), 490–512.
- Wei C., Ye L., Hu Y., Huang Z., Danyushevsky L., Wang H. (2021) LA-ICP-MS analyses of trace elements in base metal sulfides from carbonate-hosted Zn-Pb deposits, South China: A case study of the Maoping deposit. Ore Geology Reviews, 130(2), 103945
- Wind S.C., Schneider D.A., Hannington M.D., McFarlane C.R.M. (2020) Regional similarities in lead isotopes and trace elements in galena of the Cyclades Mineral District, Greece with implications for the underlying basement. Lithos, 366, 105559.
- Yatimov U.A., Ayupova N.R., Blinov I.A., Kotlyarov V.A. (2019) [Bismuth minerals of sulphide-magnetite ores from the Aktash deposit (Western Karamazar, Tajikistan)]. Mineralogiya [Mineralogy], 5(4), 39–51. (in Russian)
- Yatimov U.A., Ayupova N.R., Maslennikov V.V., Kotlyarov V.A., Shilovskikh V.V. (2022a) Gold–Telluride Mineralization in Pb–Zn–Fe Ores of the Aktash Skarn Deposit (Western Karamazar, Tajikistan). Geology of Ore Deposits, 64(4), 202–220.
- Yatimov U.A., Safaraliev N.S., Shilovskikh V.V., Kotlyarov V.A. (2020) [Tsumoite and pilsenite of the skarn-magnetite deposit Aktash (Western Karamazar)]. Doklady Akademii nauk Respubliki Tadzhikistan [Reports of the Academy of Sciences of the Republic of Tajikistan], 63(9–10), 643–648. (in Russian)
- Yatimov, U.A., Maslennikov, V.V., Ayupova, N.R., Artem’ev, D.A. (2022б) [Trace elements in magnetite as indicators of formation conditions of iron ore of Aktash deposit, Western Karamazar, Tajikistan]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov [Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering], 333(12), 151–167. (in Russian)
- Ye L., Cook N.J., Ciobanu C.L., Liu Y.P., Zhang Q., Liu T.G., Gao W., Yang Y.L., Danyushevskiy L. (2011) Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geology Reviews, 39, 188–217.
- Yuan B., Zhang C.Q., Yu H.J., Yang Y.M., Zhao Y.X., Zhu C.C., Ding Q.F., Zhou Y.B., Yang J.C., Xu Y. (2018) Element enrichment characteristics: insights from element geochemistry of sphalerite in Daliangzi Pb-Zn deposit, Sichuan, Southwest China. Journal of Geochemical Exploration, 186, 187–201.
MINERALOGY 3 2023