Trace element composition of beryl from spodumene pegmatite deposits of the Kunar Province, Afghanistan
S.G. Skublov, A. Yosufzai, A.N. Evdokimov, A.K. Gavrilchik
UDK
549.646.1:550.42 | https://doi.org/10.35597/2313-545X-2024-10-2-4 | Read PDF (RUS) |
The study of trace element composition of beryl from the Chambalak and Digal deposits of the Darai Pech pegmatite feld of the Kunar province (Afghanistan) using secondary ion mass spectrometry (SIMS) revealed the sectoriality of the beryl crystal from the Chambalak deposit. The inner and outer parts of the profle are identifed as the pinacoid (0001) and prism (10 1 0) growth zones, respectively. At the boundary of these two simple forms, the Cs, Na, Ca, Fe, Mg, and V content strongly increases. The prism growth zone exhibits the growth pyramids: a decrease in the Na, Fe, V, Ni, and Cr content during growth towards the edge of the beryl crystal. The H2O and Mg content increases in the prism growth zone. No boundary between the pinacoid and prism growth zones is observed in beryl from the Digal deposit. There is a reason to consider its profle as the prism growth zone. A comparison of beryl based on the content of indicative elements, the increase of which corresponds to the fractionation trend of pegmatite melt (Cs, Li, and Rb), from pegmatite deposits of the Kunar province with beryl from other objects showed that pegmatite melt in the studied deposits was moderately fractionated corresponding to the initial evolution stages. It is shown that the content of some elements of beryl from the prism and pinacoid growth zones can fundamentally differ.
Keywords: beryl, spodumene pegmatites, typomorphism of minerals, trace elements, SIMS method, Kunar province, Afghanistan.
Funding. This study was supported by state contract of the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences no. FMUW-2022-0005.
Acknowledgements. The authors are grateful to S.G. Simakin and E.V. Potapov for ion probe analyses and M.P. Popov (Urals State Mining University, Yekaterinburg) for criticism and recommendations, which allowed us to improve the manuscript.
Confict of interest. The authors declare that they have no conficts of interest.
Author contribution. S.G. Skublov, A. Yosufzai, A.N. Evdokimov – conceptualization, investigation, writing – original draft; A.K. Gavrilchik – visualization, writing – review & editing. All the authors approved the fnal version of the manuscript prior to publication.
For citation: Skublov S.G., Yosufzai A., Evdokimov A.N., Gavrilchik A.K.Trace element composition of beryl from spodumene pegmatite deposits of the Kunar Province, Afghanistan. Mineralogy, 10(2), 58–77. DOI: 10.35597/2313-545X-2024-10-2-4
Received 16.04.2024, revised 07.05.2024, accepted 11.05.2024
S.G. Skublov, Institute of Precambrian Geology and Geochronology RAS, St. Petersburg, Russia; skublov@yandex.ru
A. Yosufzai, Empress Catherine II St. Petersburg Mining University,
St. Petersburg, Russia; Kabul Polytechnic University, Kabul, Afghanistan
A.N. Evdokimov, Empress Catherine II St. Petersburg Mining University,
St. Petersburg, Russia; evdokimov_an@pers.spmi.ru
A.K. Gavrilchik, Empress Catherine II St. Petersburg Mining University,
St. Petersburg, Russia
- Alekseev V.I. (2023) Wodginite as an indicator mineral of tantalum-bearing pegmatites and granites. Journal of Mining Institute, 262, 495–508. DOI: 10.31897/ PMI.2023.19
- Andersson L.O. (2006) The positions of H+, Li+ and Na+ impurities in beryl. Physics and Chemistry of Minerals, 33, 403–416. https://doi.org/10.1007/s00269-006-0086-x
- Aurisicchio C., Fioravanti G., Grubessi O., Zanazzi P.F. (1988) Reappraisal of the crystal chemistry of beryl. American Mineralogist, 73, 826–837.
- Bačík P., Fridrichová J., Uher P., Vaculovič T., Bizovská V., Škoda R., Dekan J., Miglierini M., Malíčková I. (2021) Beryl crystal chemistry and trace elements: Indicators of pegmatite development and fractionation (Damara Belt, Namibia). Lithos, 404, 106441. https://doi.org/10.1016/j. lithos.2021.106441
- Černý P. (2002) Mineralogy of beryllium in granitic pegmatites. Reviews in Mineralogy and Geochemistry, 50, 405–444. https://doi.org/10.2138/rmg.2002.50.10
- Černý P., Turnock A. (1975) Beryl from the granitic pegmatites at Greer Lake, Southeastern Manitoba. The Canadian Mineralogist, 13, 55–61.
- Černý P., Anderson A.J., Tomascak P.B., Chapman R. (2003) Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. The Canadian Mineralogist, 49, 1003–1011. https://doi.org/10.2113/ gscanmin.41.4.1003
- Doebrich J.L., Wahl R.R., Chirico P.G., Wandrey C.J., Bohannon R.G., Orris G.J., Bliss J.D., Wasy A., Younusi M.O. (2006) Geologic and mineral resource map of Afghanistan (No. 2006-1038). Geological Survey (US). https://pubs.usgs. gov/of/2006/1038/
- Dowty E. (1976) Crystal structure and crystal growth; II, Sector zoning in minerals. American Mineralogist, 61, 460–469.
- Duan Z., Jiang S.Y., Su H.M., Salvi S., Monnier L., Zhu X., Lv X. (2024) Beryl as an indicator for elemental behavior during magmatic evolution and metasomatism in the large Shihuiyao Rb-Nb-Ta-Be deposit, Inner Mongolia, NE China. Ore Geology Reviews, 166, 105940. https://doi. org/10.1016/j.oregeorev.2024.105940
- Fan Z.W., Xiong Y.Q., Shao Y.J., Wen C.H. (2022) Textural and chemical characteristics of beryl from the Baishawo Be-Li-Nb-Ta pegmatite deposit, Jiangnan Orogen: Implication for rare metal pegmatite genesis. Ore Geology Reviews, 149, 105094. https://doi.org/10.1016/j. oregeorev.2022.105094
- Giuliani G., Groat L.A., Marshall D., Fallick A.E., Branquet Y. (2019) Emerald deposits: A review and enhanced classifcation. Minerals, 9, 105. https://doi.org/10.3390/ min9020105
- Jiang S.Y., Wang W., Su H.M. (2023) Super-enrichment mechanisms of strategic critical metal deposits: current understanding and future perspectives. Journal of Earth Sciences, 34, 1295–1298. https://doi.org/10.1007/ s12583-023-2001-5
- Khaleal F.M., Saleh G.M., El Saeed R.L., Lentz D.R. (2022) Occurrences and genesis of emerald and others beryl mineralization in Egypt: A review. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103266. https://doi. org/10.1016/j.pce.2022.103266
- Lei X.F., Jiang S.Y., Romer R.L., Su H.M., Cao M.Y., Zhao C.L. (2023) Petrogenesis of the Weiling beryl-bearing granitic pegmatite – A giant LCT-type pegmatite in the Northern Wuyi area, South China. Ore Geology Reviews, 160, 105572. https://doi.org/10.1016/j.oregeorev.2023.105572
- Levashova E.V., Popov V.A., Levashov D.S., Rumyantseva N.A. (2022) Distribution of trace elements controlled by sector and growth zonings in zircon from a miaskite pegmatite of the Vishnegorsky massif, the Southern Urals. Journal of Mining Institute, 254, 136–148. DOI: 10.31897/PMI.2022.29
- Lum J.E., Viljoen F., Cairncross B., Frei D. (2016) Mineralogical and geochemical characteristics of BERYL (AQUAMARINE) from the Erongo Volcanic Complex, Namibia. Journal of African Earth Sciences, 124, 104–125. https://doi.org/10.1016/j.jafrearsci.2016.09.006
- Mashkoor R., Ahmadi H., Rahmani A.B., Pekkan E. (2022) Detecting Li-bearing pegmatites using geospatial technology: the case of SW Konar Province, Eastern Afghanistan. Geocarto International, 37, 14105–14126. https://doi.org/10.1080/10106049.2022.2086633
- Mosazai A.M., Yousuf A., Ahmadi H. (2017) The geological characteristics and economical importance of pegmatite belt of Afghanistan. Геология и охрана недр, 65 (4), 26–33.
- Neiva A.M.R., Neiva J.M.C. (2005) Beryl from the granitic pegmatite at Namivo, AltoLigonha, Mozambique. Neues Jahrbuch für Mineralogie, 181, 173–182.
- Pauly C., Gysi A.P., Pfaff K., Merkel I. (2021) Beryl as indicator of metasomatic processes in the California Blue Mine topaz-beryl pegmatite and associated miarolitic pockets. Lithos, 404–405, 106485. https://doi.org/10.1016/j. lithos.2021.106485
- Popov M.P. (2022) Peculiarities of rare-metal mineralization and genetic relationship of mineralassociations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt). Journal of Mining Institute, 255, 337–348. DOI: 10.31897/PMI.2022.19
- Popov V.A. (2011) Practical genetic mineralogy. Yekaterinburg, UrO RAN, 167 p. (in Russian)
- Rakovan J., Reeder R.J. (1994) Differential incorporation of trace elements and dissymmetrization in apatite: The role of surface structure during growth. American Mineralogist, 79, 892–903.
- Rakovan J., Reeder R.J. (1996) Intracrystalline rare earth element distributions in apatite: Surface structural infuences on incorporation during growth. Geochimica et Cosmochimica Acta, 60, 4435–4445. https://doi.org/10.1016/ S0016-7037(96)00244-X
- Rakovan J., McDaniel D.K., Reeder R.J. (1997) Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal Sm-Nd age. Earth and Planetary Science Letters, 146, 329–336. https:// doi.org/10.1016/S0012-821X(96)00226-9
- Rossovskiy L.N., Chmyrev V.M. (1977) Distribution patterns of rare-metal pegmatites in the Hindu Kush (Afghanistan). International Geology Review, 19, 511–520. https://doi.org/10.1080/00206817709471047
- Sardi F.G., Heimann A. (2014) Pegmatitic beryl as indicator of melt evolution: example from the Velasco district, Pampeana pegmatite province, Argentina, and review of worldwide occurrences. The Canadian Mineralogist, 52, 809–836. https://doi.org/10.3749/canmin.1400032
- Scandale E., Lucchesi S. (2000) Growth and sector zoning in a beryl crystal. European Journal of Mineralogy, 12, 357–366. https://doi.org/10.1127/0935-1221/2000/0001-0357
- Skublov S.G., Gavrilchik A.K., Berezin A.V. (2022) Geochemistry of beryl varieties: comparative analysis and visualization of analytical data by principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). Journal of Mining Institute, 255, 455– 469. DOI: 10.31897/PMI.2022.40
- Skublov S.G., Levashova E.V., Mamykina M.E., Gusev N.I., Gusev A.I. (2024) Polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon. Journal of Mining Institute, 1–23. EDN RGKCIJ
- Staatz M.H., Grifftts W.R., Barnett P.R. (1965) Differences in the minor element compositions of beryl in various environments. American Mineralogist, 50, 1783– 1795.
- Sunagawa I., Urano A. (1999) Beryl crystals from pegmatites: morphology and mechanism of crystal growth. Journal of Gemmology, 26, 521–533.
- Suo Q.Y., Shen P. , Luo Y.Q., Li C.H., Feng H.X., Cao C., Pan H.D., Bai Y.X. (2022) Beryl mineralogy and fuid inclusion constraints on the Be enrichment in the Dakalasu No.1 pegmatite, Altai, NW China. Minerals, 12, 450. https:// doi.org/10.3390/min12040450
- Taran M.N., Vyshnevskyi O.A. (2019) Be, Fe2+-substitution in natural beryl: an optical absorption spectroscopy study. Physics and Chemistry of Minerals, 46, 795–806. https://doi.org/10.1007/s00269-019-01040-2
- Uher P., Chudík P., Bačík P., Vaculovič T., Galiova M. (2010) Beryl composition and evolution trends: an example from granitic pegmatites of the beryl-columbite subtype, western Carpathians, Slovakia. Journal of Geosciences, 55, 69–80. http://doi.org/10.3190/jgeosci.060
- Wang R.C., Che X.D., Zhang W.L., Zhang A.C., Zhang H. (2009) Geochemical evolution and late re-equilibration of Na–Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21, 795–809. https://doi.org/10.1127/0935-1221/2009/0021-1936
- Watson E.B. (1996) Surface enrichment and trace-element uptake during crystal growth. Geochimica et Cosmochimica Acta, 60, 5013–5020. https://doi.org/10.1016/ S0016-7037(96)00299-2
- Watson E.B., Liang Y. (1995) A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist, 80, 1179– 1187. https://doi.org/10.2138/am-1995-11-1209
MINERALOGY 2 2024