Nanocomposition of hydroxylapatite from cortical bone tissue
A.A. Bibko, D.V. Lychagin, O.V. Bukharova, E.A. Kostrub, M.O. Khrushcheva
UDK 549.01:549.02:549.752:553.086 | https://doi.org/10.35597/2313-545X-2024-10-3-2 | Read PDF (RUS) |
Hydroxylapatite is one of the main components of bone tissue. In combination with collagen, it provides unique strength properties of the bone. The nanostructure of bone tissue (its composition) remains a matter of debate. In this work, we studied the cortical bone tissue of rats using transmission electron microscopy (TEM) and X-ray diffraction. According to the results of the Scherrer method, the size of hydroxylapatite crystallites is 8.8 ? 4.0 nm. The TEM showed the presence of crystalline hydroxyapatite areas in the interfibrillary space of collagen with the sizes ranging from 10 ? 5 to 50 ? 10 nm. These areas are the crystalline aggregates with a subblock structure, which is expressed in different orientations of axis c. No amorphous substance in bone tissue was identified using electron nanodiffraction.
Keywords: hydroxylapatite, bone tissue, biomineral, nanostructure, TEM, Scherrer method.
Funding. This work was supported by state contract no. 0721-2020-0041 of the Ministry of Science and Higher Education of the Russian Federation.
Acknowledgements. Samples for TEM and imaging were prepared using equipment of the Shared Research Center “Nanotech” of the Institute of Strength Physics and Materials Science, Siberian Division, Russian Academy of Sciences (Tomsk, Russia). X-ray diffraction studies were carried out using the equipment of the Tomsk Regional Shared Research Center of the National Research Tomsk State University (Tomsk, Russia). We thank the reviewer for the constructive comments for the improvement of the manuscript.
Conflict of interest. The authors declare that they have no conflicts of interest.
Author contribution. A.A. Bibko, O.V. Bukharova – conceptualization, investigation; E.A. Kostrub, A.A. Bibko – preparation of biological samples; A.A. Bibko, D.V. Lychagin, M.O. Khrushcheva – analytical and experimental work; A.A. Bibko, O.V. Bukharova, D.V. Lychagin – writing – original draft; A.A. Bibko, O.V. Bukharova– writing – review & editing. All authors approved the final version of the article before publication. All the authors approved the final version of the manuscript prior to publication.
For citation: Bibko A.A., Lychagin D.V., Bukharova O.V., Kostrub E.A., Khrushcheva M.O. Nanocomposition of hydroxylapatite from cortical bone tissue. Mineralogy, 10(3), 20–31. DOI: 10.35597/2313-545X-2024-10-3-2
Received 19.04.2024, revised 10.06.2024, accepted 10.07.2024
A.A. Bibko, National Research Tomsk State University, Tomsk, Russia; bibko.geology@gmail.com
D.V. Lychagin, National Research Tomsk State University, Tomsk, Russia;
O.V. Bukharova, National Research Tomsk State University, Tomsk, Russia;
E.A. Kostrub, Siberian State Medical University, Tomsk, Russia;
M.O. Khrushcheva, National Research Tomsk State University, Tomsk, Russia
Atemni I., Ouafi R., Hjouji K., Mehdaoui I., Ainane A., Ainane T., Taleb M., Rais Z. (2023) Extraction and characterization of natural hydroxyapatite derived from animal bones using the thermal treatment process. Emergent Materials, 6(2), 551–560. https://doi.org/10.1007/s42247-022-00444-1.
Bartsiokas A., Middleton A.P. (1992) Characterization and dating of recent and fossil bone by X-ray diffraction. Journal of Archaeological Science, 19(1), 63–72. https://doi.org/10.1016/0305-4403(92)90007-P.
Bian S., Du L.-W., Gao Y.-X., Huang J., Gou B.-D., Li X., Liu Y., Zhang T.-L., Wang K. (2012) Crystallization in aggregates of calcium phosphate nanocrystals: a logistic model for kinetics of fractal structure development. Crystal Growth & Design, 12(7), 3481–3488. 3481–3488. https://doi.org/10.1021/cg2016885.
Bibko A.A., Bukharova O.V., Kostrub E.A., Miroshnichenko A.G., Korovkin M.V. Hydroxylapatite of bone tissue: dynamics of crystallochemical alterations upon osteoporosis. Mineralogiya (Mineralogy), 9(4), 75–89. (In Russian) https://doi.org/10.35597/2313-545X-2023-9-4-6.
Brown W.E., Eidelman N., Tomazic B. (1987) Octacalcium phosphate as a precursor in biomineral formation. Advances in Dental Research, 1(2), 306–313. https://doi.org/10.1177/08959374870010022201
Burger C., Zhou H., Wang H., Sics I., Hsiao B.S., Chu B., Graham L., Glimcher M.J. (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophysical Iournal, 95 (4), 1985–1992. https://doi.org/10.1529/biophysj.107.128355
Cantaert B., Verch A., Kim Y.-Y., Ludwig H., Paunov V.N., Kro?ger R., Meldrum F.C. (2013) Formation and structure of calcium carbonate thin films and nanofibers precipitated in the presence of poly (allylamine hydrochloride) and magnesium ions. Chemistry of Materials, 25 (24), 4994–5003. https://doi.org/10.1021/cm403497g
Dumont M., Kostka A., Sander P.M., Borbely A., Kaysser-Pyzalla A. (2011) Size and size distribution of apatite crystals in sauropod fossil bones. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(1), 108–116. https://doi.org/10.1016/j.palaeo.2011.06.021
Ficai A., Andronescu E., Trandafir V., Ghitulica C., Voicu G. (2010) Collagen/hydroxyapatite composite obtained by electric field orientation. Materials Letters, 64(4), 541–544. https://doi.org/10.1016/j.matlet.2009.11.070
Frank-Kamenetskaya O.V. (2008) Structure, chemistry and synthesis of carbonate apatites – the main components of dental and bone tissues. Minerals as Advanced Materials I, 1, 241–252. https://doi.org/10.1007/978-3-540-77123-4_30
Glimcher M.J. (2006) Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Reviews in Mineralogy and Geochemistry, 64, 223–282. https://doi.org/10.2138/rmg.2006.64.8
Glimcher M.J., Bonar L.C., Grynpas M.D., Landis W.J., Roufosse A.H. (1981) Recent studies of bone mineral: is the amorphous calcium phosphate theory valid? Journal of Crystal Growth, 53(1), 100–119. https://doi.org/10.1016/0022-0248(81)90058-0
Grandfield K., Vuong V., Schwarcz H.P. (2018) Ultrastructure of bone: hierarchical features from nanometer to micrometer scale revealed in focused ion beam sections in the TEM. Calcified Tissue International, 103, 606–616. https://doi.org/10.1007/s00223-018-0454-9
Hamed E., Novitskaya E., Li J., Chen P.-Y., Jasiuk I., McKittrick J. (2012) Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomaterialia, 8(3), 1080–1092. https://doi.org/10.1016/j.actbio.2011.11.010
Hodge A.J., Petrushka J.A. (1963) Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. Proceedings of Symposium
on Aspects of Protein Structure. London, New-York, Academic Press, 289–300.Ibsen C.J.S., Chernyshov D., Birkedal H. (2016) Apatite formation from amorphous calcium phosphate and mixed amorphous calcium phosphate/amorphous calcium carbonate. Chemistry-A European Journal, 22(35), 12347–12357. https://doi.org/10.1002/chem.201601280
Johnsson M.S.-A., Nancollas G.H. (1992) The role of brushite and octacalcium phosphate in apatite formation. Critical Reviews in Oral Biology & Medicine, 3 (1), 61–82. https://doi.org/10.1006/jsbi.1996.0066
Korago A.A. (1992) Introduction to biomineralogy. St. Petersburg, Nedra, 280 p. (in Russian)
Landis W.J., Hodgens K.J., Song M.J., Arena J., Kiyonaga S., Marko M., Owen C., McEwen B.F. (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging.
Journal of Structural Biology, 117(1), 24–35. https://doi.org/10.1006/jsbi.1996.0066
Lotsari A., Rajasekharan A.K., Halvarsson M., Andersson M. (2018) Transformation of amorphous calcium phosphate to bone-like apatite. Nature communications, 9(1), 4170. https://doi.org/10.1038/s41467-018-06570-x
Miller A.L., Schraer H. (1975) Ultrastructural observations of amorphous bone mineral in avian bone. Calcified Tissue Research, 18, 311–324. https://doi.org/10.1007/BF02546249
Nudelman F., Pieterse K., George A., Bomans P.H.H., Friedrich H., Brylka L.J., Hilbers P.A.J., de With G., Sommerdijk N.A.J.M. (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Materials, 9(12), 1004–1009. https://doi.org/10.1038/nmat2875
Olszta M.J., Cheng X., Jee S.S., Kumar R., Kim Y.-Y., Kaufman M.J., Douglas E.P., Gower L.B. (2007) Bone structure and formation: A new perspective. Materials Science and Engineering: R: Reports, 58(3–5), 77–116. https://doi.org/10.1016/j.mser.2007.05.001
Orgel J.P.R.O., Irving T.C., Miller A., Wess T.J. (2006) Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 103 (24), 9001–9005. https://doi.org/10.1073/pnas.0502718103
Pompe W., Worch H., Habraken W.J.E.M., Simon P., Kniep R., Ehrlich H., Paufler P. (2015) Octacalcium phosphate – a metastable mineral phase controls the evolution of scaffold forming proteins. Journal of Materials Chemistry B, 3 (26), 5318–5329. https://doi.org/10.1039/C5TB00673B
Rabiei M., Palevicius A., Monshi A., Nasiri S., Vilkauskas A., Janusas G. (2020) Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials, 10(9), 1627. https://doi.org/10.3390/nano10091627
Rogers K.D., Daniels P. (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials, 23(12), 2577–2585. https://doi.org/10.1016/S0142-9612(01)00395-7
Ryanskaya A.D., Kiseleva D.V., Pankrushina E.A., Kosintsev P.A., Bachura O.P., Gusev A.V. (2020) Structural features of biogenic apatite of subfossil skeletal remains (skulls and horns) of reindeer from the Arctic zone of Western Siberia. Trudy Fersmanovskoj nauchnoy sessii GI KNC RAN (Proceedings of the Fersman Scientific Session of the Geological Institute KSC RAS), Apatity, SI KSC RAS, 477–481. (in Russian) https://doi.org/10.31241/FNS.2020.17.091
Ryanskaya A.D., Kiseleva D.V, Shilovsky O.P., Shagalov E.S. (2019) XRD study of the Permian fossil bone tissue. Powder Diffraction, 34(S1), S14–S17. https://doi.org/10.1017/S0885715619000174
Scherrer P. (1918) Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gottingen, 2, 8–100.
Schwarcz H.P., McNally E.A., Botton G.A. (2014) Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. Journal of Structural Biology, 188(3), 240–248. https://doi.org/10.1016/j.jsb.2014.10.005
Simon P., Gruner D., Worch H., Pompe W., Lichte H., El Khassawna T., Heiss C., Wenisch S., Kniep R. (2018) First evidence of octacalcium phosphate@ osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Scientific Reports, 8(1), 13696. https://doi.org/10.1038/s41598-018-31983-5
Song R., Colfen H. (2010) Mesocrystals – ordered nanoparticle superstructures. Advanced Materials, 22(12), 1301–1330. https://doi.org/10.1002/adma.200901365
Tao J., Pan H., Zeng Y., Xu X., Tang R. (2007) Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. The Journal of Physical Chemistry B, 111 (47), 13410–13418. https://doi.org/10.1021/jp0732918
Trueman C.N. (2013) Chemical taphonomy of biomineralized tissues. Palaeontology, 56(3), 475–486. https://doi.org/10.1111/pala.12041
Verezhak M. (2016) Multiscale characterization of bone mineral: new perspectives in structural imaging using X-ray and electron diffraction contrast. (PhD dissertation). Grenoble, Community Universite Grenoble Alpes, 227 p.
Weiner S., Arad T., Traub W. (1991) Crystal organization in rat bone lamellae. FEBS Letters, 285(1), 49–54. https://doi.org/10.1016/0014-5793(91)80722-F
Weiner S., Traub W. (1986) Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters, 206 (2), 262–266. https://doi.org/10.1016/0014-5793(86)80993-0
Wu C., Sassa K., Iwai K., Asai S. (2007) Unidirectionally oriented hydroxyapatite/collagen composite fabricated by using a high magnetic field. Materials Letters, 61(7), 1567–1571. https://doi.org/10.1016/j.matlet.2006.07.080
Xu Y., Nudelman F., Eren E.D., Wirix M.J.M., Cantaert B., Nijhuis W.H., Hermida-Merino D., Portale G., Bomans P.H.H., Ottmann C., Friedrich H., Bras W., Akiva A., Orgel J.P.R.O., Meldrum F.C., Sommerdijk N. (2020) Intermolecular channels direct crystal orientation in mineralized collagen. Nature Communications, 11(1), 5068. https://doi.org/10.1038/s41467-020-18846-2
MINERALOGY 3 2024