Coccinite from the burning dump of Almaznaya coal mine (Eastern Donbass) – the first find in Russia
A.V. Kasatkin, I.V. Pekov, O.V. Trofimov, A.A. Agakhanov, M.D. Milshina, S.N. Britvin
UDK
49.453 (470.61) | https://doi.org/10.35597/2313-545X-2025-11-2-1 | Reed PDF (RUS) |
An extremely rare mercury iodide coccinite, HgI2, was found in a burning dump of the Almaznaya coal mine (near the settlement of Gukovo, Rostov oblast, Russia). It forms bright red tabular and short-prismatic crystals with adamantine luster up to 0.5 mm in size on a crust of native sulfur, which flls the fractures in the burnt rock. This is the frst fnd of coccinite in the Russian Federation. The refectance values and quantitative chemical analysis of coccinite are published for the frst time. The chemical composition of the mineral is as follows (wt. %, mean of fve analyses, electron microprobe): Hg 45.15, Cl 0.11, Br 0.65, I 53.91, total 99.82. The empirical formula calculated based on sum of three atoms is Hg1.02I1.93Br0.04Cl0.01. The strongest refections of the powder X-ray diffraction diagram are [d,A(I)(hkl)]: 6.220(29)(002), 4.122(82) (101), 3.575(100)(102), 3.008(37)(103), 2.767(35)(112), 2.189(98)(114, 200). The parameters of the tetragonal unit cell calculated from the powder data are as follows: a = 4.3744(2), c = 12.4301(7) A, V = 237.86(2) A3. Coccinite crystallized from hot gases after the combustion of coal-bearing rocks in the inner part of the dump.
Keywords: coccinite, mercury iodide, frst fnd in Russia, burning dump, Almaznaya coal mine, Eastern Donbass.
Funding. The X-ray diffraction study was carried out in the Research Centre for X-ray Diffraction Studies of the St. Petersburg State University (St. Petersburg) in accordance with state contract no. AAAA-A19-119091190094.
Acknowledgements. We are grateful to Mikhail M. Bitman, Alexander I. Tishchenko and Nikita V. Chukanov for the help with literature and discussion. The authors are also thankful to an anonymous reviewer for constructive comments.
Confict of interest. The authors declare that they have no conficts of interest.
Author contribution. A.V. Kasatkin – conceptualization, physical properties, optical data, chemical analyses, writing of the manuscript; I.V. Pekov – X-ray data, SEM photo, writing of the manuscript; O.V. Trofmov – feld works, literature data, writing of the manuscript; A.A. Agakhanov – analytical works; M.D. Milshina – literature data, preparation of fgures; S.N. Britvin – X-ray diffraction study. All the authors approved the fnal version of the manuscript prior to publication.
For citation: Kasatkin A.V., Pekov I.V., Trofmov O.V., Agakhanov A.A., Milshina M.D., Britvin S.N. Coccinite from the burning dump of Almaznaya coal mine (Eastern Donbass) – the frst fnd in Russia. Mineralogy, 2025, 11(1), 5–21. DOI: 10.35597/2313-545X-2025-11-2-1
Received 03.02.2025, revised 11.02.2025, accepted 14.04.2025
A.V. Kasatkin, Fersman Mineralogical Museum RAS, Moscow, Russia;
anatoly.kasatkin@gmail.com
I.V. Pekov, Moscow State University, Moscow, Russia;
O.V. Trofimov, Rostov-on-Don, Russia;
A.A. Agakhanov, Fersman Mineralogical Museum RAS, Moscow, Russia;
M.D. Milshina, Moscow, Russia;
S.N. Britvin, St. Petersburg State University, St. Petersburg, Russia
Akopyan I.K., Labzovskaya M.E., Novikov B.V., Smirnov V.M. (2007) Metastable modifications in mercury diiodide nanocrystals. Physics of the Solid State, 49, 1375–1381. https://doi.org/10.1134/S106378340707030X
Annales des mines ou recueil de memoires sur l’exploitation des mines et sur les sciences qui s’y rapportent (1829). Deuxieme serie, 5, 324 p. (in French)
Belyaev V.K., Moshkin V.M., Ponomarev E.A. (1972) New data on Hg potential of Eastern Donbas (Rostov region). Geological structure of Rostov and adjacent regions. Rostov, RGU, 204 p. (in Russian).
Bijvoet J., Claassen A., Karssen A. (1926) The crystal structure of red mercuric iodide. Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, 29, 529–546.
Britvin S.N., Dolivo-Dobrovolsky D.V., Krzhizhanovskaya M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 146, 104–107 (in Russian).
Burkart H.J. (1866) Uber einige mexikanische Mineralien. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 409–417. (in German)
Carne J.E. (1900) Mercury, or “Quicksilver”, in New South Wales, with notes on its occurrence in other colonies and countries. New South Wales Department of Mines, Mineralogical Resources, 7, 36 p.
Chesnokov B.V., Shcherbakova E.P. (1991) Mineralogy of burnt dumps of the Chelyabinsk coal basin (an experience of technogene mineralogy). Moscow, Nauka, 152 p. (in Russian)
Chesnokov B.V., Shcherbakova E.P., Nishanbaev T.P. (2008) Minerals of burnt dumps of the Chelyabinsk coal basin. Miass, IMin UrO RAN, 139 p. (in Russian)
Comptes rendus hebdomadaires des seances de l’Academie des sciences (1836). Tome troisieme, juillet – decembre 1836. Paris, Bachelier, Imprimeur-Libraire, 582–583. (in French)
Cooper M.A., Hawthorne F.C., Roberts A.C., Stanley C.J., Spratt J.C., Andrew G. (2019) Gaildunningite, ideally Hg2+3[NHg2+2]18(Cl,I)24, a new mineral from the Clear Creek Mine, San Benito County, California, USA: description and crystal structure. The Canadian Mineralogist, 57, 295–310. https://doi.org/10.3749/canmin.1800080.
Dana J.D., Dana E.S., Palache Ch., Berman H., Frondel C. (1953) The system of mineralogy. Volume II. Half-volume 1. Moscow, Izdatel’stvo inostrannoy literatury, 773 p. (in Russian)
Domeyko I. (1844) Tratado de ensayes, tanto por la via seca como por la via humeda, de toda clase de minerales y pastas de cobre, plomo, plata, oro, mercurio, &c: con descripcion de los caracteres de los principales minerales y productos de las artes en America, y en particular en Chile, Serena, Imprenta eel Colejio, 282–283. (in Spanish)
Dvornikov A.G. (1981) New data on genesis of mercury areas in Donbas coals. Doklady Akademii nauk SSSR (Doklady Academy of Sciences of the USSR), 256(6), 1478–1480 (in Russian).
Dvornikov A.G., Kirikilitsa S.I. (1987) Mercury potential of coals of the Donetsk basin. Moscow, Nedra, 155 p. (in Russian).
Eakle A.S. (1914) Minerals of California. Bulletin No. 67, California State printing office, 226 p.
Geological map L-37-IV (1956). State geological map of the USSR. Donbas series, scale 1:200 000. North Caucasian Geological Survey, 1956. (in Russian)
Geological map and map of ores of pre-Quaternary formations M-37-XXXIV (1958). Map of pre-Quaternary deposits and ores of the USSR. Donbas series, scale: 1:200000. Kiev Geological Survey, 1958. (in Russian)
Guminski C. (1997) The Hg-I (mercury-iodine) system. Journal of Phase Equilibria, 18(2), 206–215. https://doi.org/10.1007/bf02665707
Haidinger W. (1845) Handbuch der bestimmenden Mineralogie. Wien, Braumuller and Seidel, 572 p. (in German)
Hicks D., Mehl M.J., Gossett E., Toher C., Levy O., Hanson R.M., Hart G., Curtarolo S. (2019) The AFLOW library of crystallographic prototypes: Part 2. Computational Materials Science, 161, S1. https://doi.org/10.1016/j.commatsci.2018.10.043
Holland T.J.B., Redfern S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65–77. https://doi.org/10.1180/minmag.1997.061.404.07
Hostettler M., Schwarzenbach D. (2005) Phase diagrams and structures of HgX2 (X = I, Br, Cl, F). Comptes Rendus Chimie, 8, 147–156. https://doi.org/10.1016/j.crci.2004.06.006
Hostettler M., Birkedal H., Schwarzenbach, D. (2002). The structure of orange HgI2. I. Polytypic layer structure. Acta Crystallographica Section B Structural Science, 58(6), 903–913. https://doi.org/10.1107/s010876810201618x
Jeffrey G.A., Vlasse M. (1967) On the crystal structures of the red, yellow and orange forms of mercuric iodide. Inorganic Chemistry, 6, 396–399.
Kasatkin A.V., Kuznetsov A.M., Arzamastsev N.A. (2022) Ore minerals of the Buranovskoe tungsten deposit (Southern Urals). Mineralogiya (Mineralogy), 8(3), 23–46. https://doi.org/10.35597/2313-545X-2022-8-3-2 (in Russian)
Kizilstein L.Ya., Kholodkov Yu.I. (1999) Ecologically hazardous elements in coals of the Donets Basin. International Journal of Coal Geology, 40, 189–197. https://doi.org/10.1016/S0166-5162(98)00068-8
Krivovichev V.G. (2021) Mineral species. St. Petersburg, SPbGU, 600 p. (in Russian)
Krupp E.R., Nottes G., Heidtke U. (1989) Moschelite (Hg2I2): a new mercury mineral from Landsberg-Obermoschel. Neues Jahrbuch fur Mineralogie – Monatshefte, 1989, 524–526.
Kuzhuget R.V. (2014) Iodide and bromide mineralization in oxidized ores of the Khaak-Sair gold deposit, Western Tuva. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 143(2), 64–80. (in Russian)
Kuznetsov Yu.A., Kuts V.P., Sidenko O.G. (1987) Coccinite from the Paleozoic deposits of southern Ukraine. Doklady AN USSR. Seria B (Doklady of Academy of Sciences of the USSR. Series B), 8, 9–10. (in Russian)
Lapham M.D., Barnes J.H., Downey W.F., Jr., Finkelman R.B. (1980) Mineralogy associated with burning anthracite deposits of Eastern Pennsylvania. Mineral Resource Report 78. Harrisburg, Pennsylvania Topographic and Geologic Survey, 788 p.
Lazarenko E.K., Panov B.S., Pavlichin V.I. (1975) Mineralogy of the Donetsk basin. Kiev, Naukova Dumka, Vol. 1, 221 p. (in Russian)
Manichev V.I., Ivantishina O.M., Egorova L.N. (1979) The finding of mercury iodide in flysch of the Ukrainian Carpathians. Doklady AN USSR. Seria B (Doklady of Academy of Sciences of the USSR. Series B), 9, 701–703. (in Russian)
McCormack J.K., Dickson F.W., Leshendok M.P. (1991) Radtkeite, Hg3S2ClI, a new mineral from the McDermitt mercury deposit, Humboldt County, Nevada. American Mineralogist, 76, 1715–1721. https://doi.org/0003–004X/91/0910–1715$02.00
Minerals of Broken Hill (1999) Ed. by W.D. Birch. Broken Hill City Council, 135–136.
Mines of the Donetsk Basin (1965) Eds. by A.P. Sudoplatov and A.M. Kurnosov. Moscow, Nedra, 612 p. (in Russian)
Moses A.J. (1901) Mineralogical notes. Mercuric iodide from New South Wales. American Journal of Science, 12, 98–99.
Nottes G., Heidtke U. (1986) Zur Kenntnis der Jodquecksilber-Minerale vom Moschellandsberg, Pfalz. Aufschlu?, 37, 31–36. (in German)
Panov B.S., Proskurnya Yu.A. (2001) New minerals of Donbas. Naukovi pratsi Donetskogo natsionalnogo tekhnichnogo universitetu, seria girnichno-geologichna (Scientific Proceedings of the Donetsk National Technical University. Geological Series), 32, Donetsk, DonNTU, 3–8. (in Russian)
Panov B.S., Dorfman M.D., Smolyaninova N.N. (1974) Salammoniac from the Donetsk basin. Trudy Mineralogicheskogo muzeia imeni A.E. Fersmana (Proceedings of the Fersman Mineralogical Museum), 23, 220–223. (in Russian)
Panov B.S., Proskurnya Yu.A., Melnikov V.S., Grechanovskaya E.E. (2000) Neomineralization of burning coal dumps in Donbas. Mineralogicheskiy Zhurnal (Mineralogical Journal), 22(4), 37–46. (in Russian)
Parafiniuk J., Hatert F. (2020) New IMA CNMNC guidelines on combustion products from burning coal dumps. European Journal of Mineralogy, 32, 215–217. https://doi.org/10.5194/ejm-32-215-2020
Parafiniuk J., Siuda R. (2021) High temperature sulfate minerals forming on the burning coal dumps from Upper Silesia, Poland. Minerals, 11, 228. https://doi.org/10.3390/min11020228
Pekov I.V., Zubkova N.V., Britvin S.N., Agakhanov A.A., Polekhovsky Y.S., Pushcharovsky D.Y., Mohn G., Desor J., Blass G. (2023) A new mineral hanauerite, AgHgSI, and common crystal chemical features of natural mercury sulphohalides. Crystals, 13(8). https://doi.org/10.3390/cryst13081218
Proskurnya Yu.A. (2000) Mineralogy of coal mine dumps (on example of the Donetsk-Makeevka industrial region). (PhD Dissertation). Donetsk, DTGU, 165 p. (in Russian)
Roberts A.C., Cooper M.A., Hawthorne F.C., Criddle A.J., Stirling J.A.R., Dunning G.E. (2002) Tedhadleyite, Hg2+Hg1+10O4I2(Cl,Br)2, a new mineral species from the Clear Creek Claim, San Benito County, California. The Canadian Mineralogist, 40, 909–914. https://doi.org/10.2113/gscanmin.40.3.909
Roberts A.C., Cooper M.A., Hawthorne F.C., Stirling J.A.R., Paar W.H., Stanley C.J., Dunning G.E.,Burns P.C. (2003) Vasilyevite, (Hg2)2+10O6I3Br2Cl(CO3), a new mineral species from the Clear Creek claim, San Benito County, California. The Canadian Mineralogist, 41, 1167–1172. https://doi.org/10.2113/gscanmin.41.5.1167
Roberts A.C., Stirling J.A.R., Criddle A.J., Dunning G.E., Spratt J. (2004) Aurivilliusite, Hg2+Hg1+OI, a new mineral species from the Clear Creek claim, San Benito County, California, USA. Mineralogical Magazine, 68, 241–245. https://doi.org/10.1180/0026461046820184
Sarp H., Birch W.D., Hlava P.F., Pring A., Sewell D.K.B., Nickel E.H. (1987) Perroudite, a new sulfide-halide of Hg and Ag from Cap-Garonne, Var, France, and from Broken Hill, New South Wales, and Coppin Pool, Western Australia. American Mineralogist, 72, 1251–1256. https://doi.org/0003–004X/1112–1251$02.00
Schwarzenbach D. (1969) The crystal structure and one-dimensional disorder of the orange modification of
HgI2. Zeitschrift fur Kristallographie – Crystalline Materials, 128, 97–114. https://doi.org/10.1524/zkri.1969.128.16.97
Smith G. (1926) A contribution to the mineralogy of New South Wales. Geological Survey of New South Wales. Mineralogical Resources, 34, 145 p.
Srebrodolskiy B.I. (1973) Mineral assemblages of native sulfur in coal-bearing strata. Mineralogicheskiy sbornik L’vovskogo universiteta (Mineralogical proceedings of the Lvov University), 27(3), 287–296. (in Russian).
Stracher G.B., Prakash A., Sokol E.V. (2014) Coal and peat fires: a global perspective. Volume 3: Case studies – coal fires. Amsterdam, Elsevier, 816 p.
The concept of the development of coal industry of the Rostov region for the period up to 2030. Approved by the Decree of the Government of the Rostov Region dated 05.07.2012 No. 599. http://special.gukovo.donland.ru/Default.aspx?pageid=111881. (in Russian)
The Penny cyclop?dia of the society for the diffusion of useful knowledge (1839). Volume XV. London, Charles Knight and Co., p. 103 p.
Trufanov V.N., Gipich L.V., Meshaninov F.V. (1999) Nanomineral assemblages of burning waste heaps in Eastern Donbas. Tezisy IX c’ezda VMO. Abstracts of the IX VMO Congress. St. Petersburg, 27–28 (in Russian).
Vasiliev V.I., Usova L.V., Palchik N.A. (1989) Grechishchevite–Hg3S2(Br,Cl,I)2 – a new supergene mercury sulfohalide. Geologiya i geofizika (Geology and Geophysics), 7, 61–69. (in Russian).
Websky M. (1877) Uber Hornquecksilber von el Doctor in Mexico. Auszug aus dem Monatsbericht der Konigl. Akademie der Wissenschaften zu Berlin, 461–467. (in German)
Witzke T. (1997) New data on the mercury iodide mineral coccinite, HgI2. Neues Jahrbuch fur Mineralogie, Monatshefte, 11, 505–510. https://doi.org/10.1127/njmm/1997/1997/505
Yudovich Ya.E., Ketris M.P. (2004) The problem of mercury in coals. Vestnik Instituta geologii Komi nauchnogo centra Uralskogo otdeleniya RAN (Bulletin of the Institute of Geology of the Komi Scientific Center of the Uralian Branch of RAS), 10(118), 6–13 (in Russian).
Yudovich Ya.E., Ketris M.P. (2005) Toxic trace elements in fossil coals. Yekaterinburg, UrO RAN, 650 p. (in Russian).
Yudovich Ya.E., Ketris M.P. (2006) Valuable trace elements in coals. Yekaterinburg, UrO RAN, 538 p. (in Russian).
Zacek V., Ondrus P. (1997) Mineralogy of recently formed sublimates from Katerina colliery in Radvanice, Eastern Bohemia, Czech Republic. Vestnik Ceskeho geologickeho ustavu, 72, 289–302.
Zaritsky P.V. (1970) Mineralogy and geochemistry of diagenesis of coal-bearing deposits (based on materials from the Donetsk basin). Kharkov, KhGU, 223 p. (in Russian).
MINERALOGY 2 2025