Sulfur sources of sulfides of the Ak-Sug Cu-Au porphyry deposit, Eastern Tuva
R.V. Kuzhuget, A.O. Mongush, N.N. Ankusheva
UDK 553.43 : 549.3 : 546.22 | https://doi.org/10.35597/2313-545X-2019-5-4-6 | Read PDF (RUS) |
The paper presents the S isotopic composition of sulfdes from the Ak-Sug Au-Cu-porphyry deposit hosted by Early Proterozoic magmatic rocks. The S isotopic composition of sulfdes varies from +1.0 to +3.2 ‰: +2.5 to +3.2 ‰ for molybdenite-I, +1.0 to +3.1 ‰ for pyrite-III, -2.3 to -0.9 ‰ for chalcopyrite-III-V,-2.9 to -2.4 ‰, for chalcopyrite-VI and -1.0 ‰ for pyrite-V. The close-to-zero S isotopic ratios of sulfdes from the Ak-Sug deposit indicate magmatic (from -5 to +5 ‰) or mantle (from -3 to +3 ‰) S source typical of most Cu-porphyry deposits of the Pacifc Fire Ring.
Figures 5. Table 1. References 23.
Key words: sulfdes, sulfur isotopes, copper porphyry deposits, Tuva.
R.V. Kuzhuget, Tuvinian Institute for Exploration of Natural Resources SB RAS,
ul. Internatsionalnaya, 117a, Kyzyl, 667007 Russia; rkuzhuget@mail.ru
A.O. Mongush, Tuvan State University, ul. Lenina, 36, Kyzyl, 667000 Russia
N.N. Ankusheva, South-Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk region, 456317 Russia
- Berzina A.N., Berzina A.P., Gimon V.O. (2016) Paleozoic-Mesozoic porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of the Siberian Craton: geochemistry, geochronology, and petrogenesis (a Review). Minerals, 6(6), 125.
- Berzin N.A., Kungurtzev L.V. (1996) [Geodynamic interpretation of geological complexes of Altay-Sayany region]. Geologiya i geofzika, [Geology and Geophysics] 37(1), 63-81. (in Russian)
- Berzina A.N., Sotnikov V.I., Economou-Eliopoulos M., Eliopoulos D.G. (2007) [First fnding of merenskyite (Pd,Pt)Te2 in porphyry Cu-Mo ores in Russia]. Geologiya i geofzika, [Geology and Geophysics], 48(8), 656-658. (in Russian)
- Cooke D.R, Hollings P., Wilkinson J.J., Tosdal R.M.
(2014) Geochemistry of porphyry deposits. Treatise on Geochemistry, Second edition, 13, 357-381. - Field, C.W, Zhang, L., Dilles, J.H., Rye, RO., Reed, M.H. (2005) Sulfur and oxygen isotopic record in sulfate and sulfde minerals of early, deep, pre-main stage porphyry Cu-Mo and late main stage base-metal mineral deposits, butte district, Montana. Chemical Geology, 215 (1), 61-93.
- Hedenquist J.W., Lowenstern J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, 370, 519-527.
- Hedenquist J.W., Richards J.P. (1998) The infuence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology, 235-256.
- Hoefs J. (2009) Stable isotope geochemistry. Berlin, Springer, 281 p.
- Hou Z., Zhang H., Pan X., Yang Z. (2011) Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafc lower crust – examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39, 21-45.
- Kudryavtsev Yu.K, Tretyakova E.N., Salnikov AE., Rakhimipur G. (2012) [Geological and geochemical models of multy-rank (Аи)-Мо-Сu porphyry ore deposits]. Moscow, IMGRE, 142 p. (in Russian)
- Kuzhuget R.V., Hertek A.K., Lebedev V.I., Zabe-lin V.I. (2015) [Compositional features of native gold in ore assemblages of the Ak-Sug (Аи)-Мо-Сu porphyry deposit, NE Tuva]. Geologiya i mineral’nye resursy Sibiri [Geology and mineral resources of Siberia], 2(22), 45-52. (in Russian)
- Kuzhuget R.V., Mongush A.A., Mongush A-D.O.
(2018) [Evolution of chemical composition of fahlores from the Ak-Sug (Аи)-Мо-Сu porphyry deposit, NE Tuva]. Izvestiya Tomskogo polytekhnicheskogo universiteta. Inzhiniring georesursov [Bulletin of Tomsk Polytechnic University. Engineering of Georesources], 329(2), 81-91. - Mongush A.D., Lebedev V.I. (2013) [The Ak-Sug Cu-Mo porphyry deposit: composition of ores and rocks]. Izvestiya SO RAEN. Otdelenie sektsii nauk o Zemle [Bulletin of SB RANS. Earth´s Science Department], 1(42), 22-29. (in Russian)
- Ohmoto H. (1986) Stable isotope geochemistry of ore deposits. Review in Mineralogy, 16, 491-560.
- Ohmoto H., Goldhaber M.B. (1997) Sulfur and carbon isotopes. In:
- Geochemistry of hydrothermal ore deposits. N-Y., Wiley, 517-611.
- Ohmoto H., Rye R.O. (1979) Isotopes of sulfur and carbon. Geochemistry of hydrothermal ore deposits. N.-Y., John Wiley and Sons, 509-567.
- Pollard P.J., Pelenkova E., Mathur R (2017) Paragenesis and Re-Os molybdenite age of the Cambrian Ak-Sug porphyry Cu-Au-Mo deposit, Tyva Republic, Russian Federation. Economic Geology, 112, 1021-1028.
- Richards J.P. (2009). Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting subduction-modifed lithosphere. Geology, 37(3), 247-250.
- Richards J.P. (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geoscience, 6, 911-916.
- Richards J.P, Mcculloch M.T., Chappell B.W., Kerrich R (1991) Sources of metals in the Porgera gold deposit, Papua New Guinea: evidence from alteration, isotope, and noble metal geochemistry. Geochimica et Cosmochimica Acta, 55 (2), 565-580.
- Sillitoe RH. (2010) Porphyry copper systems. Economic Geology, 105, 3-41.
- Sotnikov V.I., Ponomarchuk V.A., Pertceva A.P., Berzina A.P, Berzina AN., Gimon V.O. (2004) [Evolution of S isotopes in Cu-Mo porphyry ore-magmatic systems of Siberia and Mongolia]. Geologiya i geofzika, [Geology and Geophysics], 45, 963-974. (in Russian)
- Zabelin V.I. (1992) [The geological-genetic model of the Ak-Sug Cu-Mo deposit]. In: Magmatizm i metallogeniya rudnykh rayonov Tuvy [Magmatism and metallogeny of Tuva ore regions]. Novosibirsk, Nauka, 92-103. (in Russian
MINERALOGY № 4 2019