Distribution, morphology, sulfur isotopic composition and genesis gypsum deposits in Novoafonskaya cave (Abkhazia)
O.Ya. Chervyiatsova, S.S. Potapov, S.A. Sadykov, L.V. Leonova, R.S. Dbar
UDК 54.027:546.22:549.76:551.44:550.42
Areas of gypsum occurrence in the Novoafonskaya cave and textural-morphological features of gypsum are studied; the results of sulfur (δ34S) isotopic analysis of the mineral are given. The massive gypsum deposits of the southern halls of the cave are a result of replacement of carbonate rocks under sulfuric acid conditions. The gypsum inherits the structural and textural features of limestones, contains the relics of the Lower Cretaceous fauna and is characterized by morphology typical of caves of sulfu-ric acid speleogenesis (SAS) (replacement pockets) and by the light sulfur (δ34S) isotopic composition (from –14.3 to –8.8 ‰). The results of studies are consistent with a hypothesis on hypogene origin of the southern halls of the cave, which involves sulfuric acid waters, and make topical its study from the point of view of modern conceptions of sulfuric acid speleogenesis.
Figures 16. Tables 1. References 37.
Key words: caves mineralogy, hypogene karst, speleogenesis, S isotopic composition, Novoafons-kaya cave.
O.Ya. Chervyiatsova, «Shulgan-Tash» State Reserve, Irgizly, Bashkortostan;
S.S. Potapov, Institute of Mineralogy Urals Branch of RAS, Miass; spot@ilmeny.ac.ru
S.A. Sadykov, Institute of Mineralogy Urals Branch of RAS, Miass;
L.V. Leonova, Institute of Geology and Geochemistry Urals Branch of RAS, Ekaterinburg;
R.S. Dbar, Ecology Institute of the Academy of Sciences of Abkhazia, Sukhum, Abkhaziya
- Бугрова И.Ю. Морские организмы как индикаторы условий осадконакопления в древних бассейнах // Учебное пособие. СПб.: СПбГУ. 2006. 104 с.
- Букия С.Г., Колосовская О.В., Абамелик Е.М. Геологическая карта и карта полезных ископаемых Абхазской АССР (м-б 1:50 000). Объяснительная записка. М. 1971. 337 с.
- Гидрогеология СССР. Т. 10: Грузинская ССР. М.: Издательство «Недра», 1970. 404 с.
- Дублянский В.Н., Тинтилозов З.К., Еремин В.И., Шутов Ю.И. Гидрогеологические особенности и происхождение Новоафонской пещеры // Природа и хозяйство Грузии. 1977. С. 40–45.
- Дуров С.А. К вопросу о происхождении солевого состава карстовых вод // Укр. хим. журн. Киев: АН УССР, 1956. Т. XXII. Вып. 1. С. 106–111.
- Климчук А.Б. Гипогенный спелеогенез, его гидрогеологическое значение и роль в эволюции карста. Симферополь: ДИАЙПИ, 2013. 180 с.
- Кутырев Э.И., Михайлов Б.М., Ляхницкий Ю.С. Карстовые месторождения. Л.: Недра, 1989. 311 с.
- Панкина О.Г., Мехтиева В.Л., Гриненко В.А., Чурмантеева М.Н. Изотопный состав серы сульфатов и сульфидов вод некоторых районов Предкавказья в связи с их генезисом // Геохимия. 1966. № 9. С. 1087–1094.
- Тинтилозов З.К. Новоафонская пещерная система. Тбилиси: Мецниереба, 1983. 151 с.
- Фор Г. Основы изотопной геологии М.: Мир, 1989. 590 с.
- Экба Я.А., Дбар Р.С., Ахсалба А.К., Кудерина Т.М. Гидрология и гидрохимия карстовых подземных вод Новоафонской пещеры // Мат. V НПК «Карст и пещеры Кавказа». Сочи, 2014. С. 9–18.
- Claypool G.E., Holser W.T., Kaplan I.R., Sakai H. and Zak I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation // Chem. Geol. 1980. № 28. P. 199–260.
- De Waele J., Audra Ph., Madonia G., Vattano M., Plan L., D’Angeli I.M., Bigot J.-Y., Nobйcourt J.C. Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily // Geomorphology. 2015. № 253. P. 452–467.
- Dublyansky V.N. Hydrothermal karst in Alpine folded belt of southern part of USSR // Kras. Spel. 980. V. XII. P. 18–38.
- Eckardt F. The origin of sulphates: an example of sulphur isotopic applications // Progress in physical geography. 2001. V. 25. №. 4. P. 512–519.
- Egemeier S.J. Cavern development by thermal waters // National Speleological Society Bulletin. 1981. V. 43. P. 31–51.
- Engel A.S., Stern L.A., Bennett P.C. Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis // Geology. 2004. V. 32. №. 5. С. 369–372.
- Forti P., Galdenzi S., Sarbu S.M. The hypogenic caves: a powerful tool for the study of seeps and their environmental effects // Continental shelf research. 2002. V. 22. №. 16. P. 2373–2386.
- Galdenzi S., Maruoka T. Gypsum deposits in the Frasassi Caves, central Italy // Journal of Cave and Karst Studies. 2003. V. 65. № 2. P. 111–125.
- Hill C.A. Geology of Carlsbad cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mex // Bur. Min. Mineral Resour. Mem. 1987. V. 117. P. 1–150.
- Hill C.A., Forti P. Cave minerals of the world. 2nd ed. Huntsville, AL: National Speleological Society, 1997. 463 p.
- Hose L.D., Palmer A.N., Palmer M.V., Northup D.E., Boston P.J., DuChene H.R. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment // Chemical Geology. 2000. V. 169. № 3. P. 399–423.
- Hose L.D., Pisarowicz J.A. Cueva de Villa Luz, Tabasco, Mexico: reconnaissance study of an active sulfur spring cave and ecosystem // Journal of Cave and Karst Studies. 1999. V. 61. P. 13–21.
- Onac B.P., Wynn J.G., Sumrall J.B. Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania // Chemical Geology. 2011. V. 288. № 3. P. 105–114.
- Palmer M.V., Palmer A.N. Petrographic and isotopic evidence for late-stage processes in sulfuric acid caves of the Guadalupe Mountains, New Mexico, USA // International Journal of Speleology. 2012. № 41 (2). P. 231–250.
- Piccini L., De Waele J., Galli E., Polyak V.J., Bernasconi S.M., Asmerom Y. Sulphuric acid speleogenesis and landscape evolution: Montecchio cave, Albegna river valley (Southern Tuscany, Italy) // Geomorphology. 2015. V. 229. P. 134–143.
- Plan L., Tschegg C., De Waele J., Spötl C. Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria) // Geomorphology. 2012. V. 169. P. 45–54.
- Polyak V.J. Clays and associated minerals in caves of the Guadalupe mountains, New Mexico // PhD thesis. Texas Tech University, 1998. 190 p.
- Polyak V.J., Provencio P. By-product materials relatied to H2S-H2SO4-influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico // Journal of Cave and Karst Studies. 2001. № 63 (1). P. 23–32.
- Puchelt H., Blum N. Geochemische Aspekte der Bildung des Gipsvorkommens der Kraushöhle/ Steiermark. Oberrhein // Geol. Abh. 1989. № 35. P. 87–99.
- Seal R.R. Sulfur isotope geochemistry of sulfide minerals // Reviews in mineralogy and geochemistry. 2006. № 61. P. 633–677.
- Strauss H. The isotopic composition of sedimentary sulfur through time // Palaeogeography, Palaeoclimatology, Palaeoecology. 1997. V. 132. P. 97–118.
- Temovski M., Audra P., Mihevc A., Spangenberg J., Polyak V., McIntosh W., Bigot J.Y. Hypogenic origin of Cave Provalata, Republic of Macedonia: rare case of successive thermal carbonic and sulfuric acid speleogenesis // Int. J. Speleol. 2013. № 42. P. 235– 246.
- Thode H.G., Monster J. Sulfur-isotope geochemistry of petroleum, evaporites and ancient seas // Am. Assoc. Petrol. Geologists, Mere. 1965. № 4. P. 367–377.
- Vattano M. et al. Acqua Fitusa Cave: an example of inactive water-table sulphuric acid cave in Central Sicily // Rend. Online Soc Geol It. 2012. V. 21. P. 637–639.
- White W.B., White E.L. Gypsum wedging and cavern breakdown: Studies in the Mammoth Cave System Kentucky // Journal of Cave and Karst Studies. 2003. V. 65. № 1. P. 43–52.
- Yonge C.J., Krouse H.R. The origin of sulphates in Castleguard cave, Columbia icefields, Canada // Chemical Geology: Isotope Geoscience section. 1987. V. 65. № 3. P. 427–433.
МINERALOGY № 3 2016