Features of trace element composition of beryl from the Uralian izumrudnye kopi
A.K. Gavrilchik, S.G. Skublov, E.L. Kotova
It was found as a result of SIMS study of beryl with various color zoning from the Uralian Izumrudnye Kopi that the content of a number of trace elements regularly varies to the margin of the crystal regardless of the color nature of the central and marginal crystal parts. The Na, Mn, Ga, Fe and Rb content increases towards the periphery of both crystals forming a U-shaped zoning. This pattern is less pronounced for Ni and Co. The Ti content, on the contrary, decreases towards the crystal margin forming a bell-shaped zoning. The distribution of a number of elements demonstrates another zoning pattern. For the beryl crystal (sample 24), the color saturation and transparency of which increases from a colorless to green-yellow from Features of trace element composition of beryl from the Uralian Izumrudnye kopi the center to the periphery of the crystal, the Sc, Cr and V forms U-shaped zoning with an increasing content to the margin of the crystal and Li exhibits a bell-shaped zoning. In transparent beryl crystal with more intense green color in the center (sample 25), the zoning pattern is dramatically distinct: bell-shaped for Sc, Cr and V and U-shaped for Li. The content of each element for both crystals coincides in the marginal zones, which have color comparable in intensity and transparency, despite the diferent color pattern with a sharply contrast¬ing distribution in the central part. In discriminant diagrams proposed for the identifcation of emeralds from various world regions, the composition of beryl from the Uralian Izumrudnye Kopi correspond to the feld of compositions of the Uralian emeralds or is close to them.
Keywords: beryl, zoning, trace elements, SIMS method, Izumrudnye Kopi, Central Urals.
Received 27.05.2021, accepted 27.07.2021
A.K. Gavrilchik, St. Petersburg Mining University, 21 Liniya 2, St. Petersburg, 199106 Russia; gavrilchik_ak2@pers.spmi.ru;
S.G. Skublov, Institute of Precambrian Geology and Geochronology,
Russian Academy of Sciences, nab. Makarova 2, St. Petersburg, 199034 Russia; skublov@yandex.ru; St. Petersburg Mining University, 21 Liniya 2, St. Petersburg, 199106 Russia;
E.L. Kotova, St. Petersburg Mining University, 21 Liniya 2, St. Petersburg, 199106 Russia
Aurisicchio C., Conte A.M., Medeghini L., Ottolini L., De Vito C. (2018) Major and trace element geochem-istry of emerald from several deposits: Implications for genetic models and classifcation schemes. Ore Geology Re-views, 94, 351–366.
Bacik P., Fridrichova J., Uher P., Rybar S., Bizovska V., Luptakova J., Vrablikova D., Pukancik L., Vaculovic T. (2019). Octahedral substitution in beryl from weakly fractionated intragranitic pegmatite Predne Solisko, Tatry Mountains (Slovakia): the indicator of genetic conditions. Journal of Geosciences, 64, 59–72.
Bidny A.S., Baksheev I.A., Popov M.P., Anosova M.O. (2011) Beryl from deposits of the Urals Emerald Belt, Russia: ICP-MS-LA and infrared spectroscopy study. Moscow University Geology Bulletin, 66(2), 108–115.
Danyushevsky L.V., Eggins S.M., Falloon T.J., Christie D.M. (2000) H2O abundance in depleted to mod-erately enriched mid-ocean ridge magmas; Part I: Incompatible behaviour, implications for mantle storage, and origin of regional variations. Journal of Petrology, 41, 1329–1364.
Gavrilchik A.K., Skublov S.G., Kotova E.L. (2021) [Trace element composition of beryl from the Sherlovaya Gora deposit, Southeastern Transbaikalia, Russia]. Zapiski RMO [Proceedings of the Russian Mineralogical Society], (2), 1–14 (in Russian)
Giuliani G., Groat L.A., Marshall D., Fallick A.E., Branquet Y. (2019) Emerald deposits: A review and en-hanced classifcation. Minerals, 9, 105.
Jochum K.P., Dingwell D.B., Rocholl A., Stoll B., Hofmann A.W., Becker S., Besmehn A., Besserte D., Dietze H.J., Dulski P., Erzinger J., Hellebrand E., Hoppe P., Horn I., Janssens K., Jenner G.A., Klein M., McDono-ugh W.F., Maetz M., Mezger K., Munker C., Nikogosian I.K., Pickhardt C., Raczek I., Rhede D., Seufert H.M., Simakin S.G., Sobolev A.V., Spettel B., Straub S., Vincze L., Wallianos A., Weckwerth G., Weyer S., Wolf D., Zimmer M. (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostandards Newsletter, 24, 87–133.
Jochum K.P., Stoll B., Herwig K., Willbold M., Hofmiann A.W., Amini M., Aarburg S., Abouchami W., Hellebrand E., Mocek B., Raczek I., Stracke A., Alard O., Bouman C., Becker S., Ducking M., Bratz H., Kl-emd R., De Bruin D., Canil D., Cornell D., De Hoog C.J., Dalpe C., Danyushevshy L., Eisenhauer A., Gao Y., Snow J.E., Groschopf N., Gunther D., Latkoczy C., Guillong M., Hauri E.H., Hofer H.E., Lahaye Y., Horz K., Jacob D.E., Kasemann S.A., Kent A.J.R., Ludwig T., Zack T., Mason P.R.D., Meixner A., Rosner M., Misawa K., Nash B.P., Pfander J., Premo W.R., Sun W.D., Tiepolo M., Vannucci R., Vennemann T., Wayne D., Wood-head J.D. (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentraions and isotope ratios. Geochemistry, Geophysics, Geosys-tems, 7, Q02008.
Kamenetsky V.S., Everard J.L., Crawford A.J., Varne R., Eggins S.M., Lanyon R. (2000) Enriched end-member of primitive MORB melts: Petrology and geochemistry of glasses from Macquarie island (SW Pacifc). Journal of Petrology, 41, 411–430.
Karampelas S., Al-Shaybani B., Mohamed F., Sang-sawong S., Al-Alawi A. (2019) Emeralds from the most important occurrences: chemical and spectroscopic data. Minerals, 9, 561.
Kupriyanova I.I. (1989) [Beryl]. In: Tipomorfsm min-eralov. Spravochnik [Typomorphism of minerals. A guide¬book]. Moscow, Nedra, 69–85 (in Russian)
Kupriyanova I.I. (2002) On the genesis of the Maly-shevsk beryllium-emerald deposit (Middle Urals, Russia). Geology of Ore Deposits, 44(4), 276–290.
Lum J.E., Viljoen F., Cairncross B., Frei D. (2016). Mineralogical and geochemical characteristics of BERYL (AQUAMARINE) from the Erongo Volcanic Complex, Namibia. Journal of African Earth Sciences, 124, 104–125.
Marshall D., Downes P.J., Ellis S., Greene R., Loughrey L., Jones P. (2016) Pressure–temperature–fuid constraints for the Poona Emerald Deposits, Western Australia: Fluid inclusion and stable isotope studies. Minerals, 6, 130.
Marshall D., Pardieu V., Loughrey L., Jones P., Xue G. (2012) Conditions for emerald formation at Davdar, China: fuid inclusion, trace element and stable isotope studies. Mineralogical Magazine, 76, 213–226.
Nosova A.A., Narkisova V.V., Sazonova L.V., Simakin S.G. (2002) Minor elements in clinopyroxene from Pa¬leozoic volcanics of the Tagil island arc in the Central Urals. Geochemistry International, 40(3), 219–232.
Popov M.P. (2016) Mineralogical signatures of rare-metal and semiprecious ore mineralization in the Murzinka-Aduy beryllium (gemstone) subprovince. News of the Ural State Mining University, 43(3), 59–63.
Popov М.P., Solomonov V.I., Spirina A.V., Ivanov М.A., Kuptsova V.V., Nikolaev A.G. (2021) An analysis of geochemical features of crystallization of emeralds as an approach to determine the deposit of them. News of the Ural State Mining University, 2(62), 16–21.
Portnyagin M., Almeev R., Matveev S., Holtz F.(2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth and Planetary Science Letters, 272, 541–552.
Portnyagin M.V., Simakin S.G., Sobolev A.V. (2002) Fluorine in primitive magmas of the Troodos ophiolite complex, Cyprus: analytical methods and main results. Geochemistry International, 40(7), 625–632.
Rocholl A.B.E., Simon K., Jochum K.P., Bruhn F., Gehann R., Kramar U., Luecke W., Molzahn M., Pernicka E., Seufert M., Spettel B., Stummeier J. (1997) Chemical characterisation of NIST silicate glass certifed reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards Newsletter, 21, 101–114.
Saeseaw S., Renfro N.D., Palke A.C., Sun Z., Mc-Clure S.F. (2019) Geographic origin determination of emerald. Gems & Gemology, 55, 614–646.
Shishkina T.A., Botcharnikov R.E., Holtz F., Almeev R.R., Portnyagin M.V. (2010) Solubility of H2O and CO2-bearing fuids in tholeiitic basalts at pressures up to 500 MPa. Chemical Geology, 277, 115–125.
Sobolev A.V., Chaussidon M. (1996) H2O concentra-tions in primary melts from island arcs and mid-ocean ridg-es: Implications for H2O storage and recycling in the mantle. Earth and Planetary Science Letters, 137, 45–55.
Tamic N., Behrens H., Holtz F. (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO-H2O fuid phase. Chemical Geology, 174, 333–347.
Zhernakov V.I. (1980) [Morphology and internal structure of the Urals emeralds]. Ontogeniya pegmatitov Urala [Ontogeny of the Urals pegmatites]. Sverdlovsk, In: UNTs UrO RAN, 79–90 (in Russian).
MINERALOGY № 3 2021