Characteristics of the unique Y-HREE-F-rich pegmatite system revealed by zircon geochemistry: a case study from mt. Ploskaya amazonite deposit, Kola Peninsula
D.R. Zozulya, S.G. Skublov, E.V. Levashova, L.M. Lyalina
UDK 553.064.1:549.514.81 | https://doi.org/10.35597/2313-545X-2025-11-1-4 | Reed PDF (RUS) |
An amazonite-quartz-albite pegmatite body of the Mt. Ploskaya intrudes a metavolcanic complex of the Keivy Terrane (Kola Peninsula) and is unique in its diversity and an assemblage of ore and accessory Y-Yb-Ta-Nb-Be-Pb-F mineralization. The studied zircon grains have a heterogeneous structure associated with the presence of relics of primary zircon (lighter in BSE regime) in a matrix of altered mineral (darker in BSE regime). The composition of relics and matrix is characterized by a decreased content of Zr (0.67–0.81 apfu) and increased content of Hf (0.13–0.15 apfu) and Yb (0.01–0.02 apfu). The composition of the matrix has a defcit of the analytical sum, which can vary 3 to 5 wt. %, and a higher content of non-formula elements: CaO and UO2 (>1 wt. %) and Na2O and ThO2 (>0.2 wt. %). The average total rare earth element (REE) content of the relict zones and the matrix is 19400 ppm and 27400 ppm, respectively. The average contents of Y and some heavy REEs (HREE: Yb and Lu) have a similar distribution: 19370 (15420 and 2430) ppm in relicts compared to 27390 (21740 and 3140) ppm in the matrix. An increased Ce/Ce* ratio of the zircon matrix indicates the phase crystallization under more oxidizing conditions compared to relics. The content of volatile components (H2O, F, and Cl) of the zircon matrix is 5–8 times higher relative to the relics. In this case, a H2O:F:Cl ratio of zircon varies from 35:5:1 in relics of igneous zircon to 20:5:1 in products of its hydrothermal alteration. The study of zircon of the Mt. Ploskaya pegmatite shows a selective accumulation of a number of trace elements and volatiles in residual fuids during the magmatic-hydrothermal evolution of the system and the unique HREE enrichment as a consequence of metasomatic alteration of the protolith.
Keywords: zircon, rare earth elements, SIMS method, amazonite pegmatite, Mt. Ploskaya deposit.
Funding. This study was supported by state contract of the Geological Institute, Kola Science Center RAS (FMEZ-2024-0004, FMEZ-2024-0008) and the Institute of Precambrian Geology and Geochronology RAS (FMUW-2022-0005).
Acknowledgements. Zircon morphology was studied in samples from the collection of Doctor of Geological and Mineral Sciences A.V. Voloshin, to whose memory this work is dedicated. The authors are grateful to A.N. Solovjeva and Yu.V. Fedotova for their help in drawing the fgures. Analytical studies of zircon were conducted by O.L. Galankina (Institute of Precambrian Geology and Geochronology RAS), E.V. Potapov and S.G. Simakin (Yaroslavl Branch of the Valiev Institute of Physics and Technology RAS,).
Confict of interest. The authors declare that they have no conficts of interest.
Author contribution. D.R. Zozulya, S.G. Skublov, E.V. Levashova – conceptualization, investigation, writing – original draft; L.M. Lyalina – visualization, writing – review & editing. All the authors approved the fnal version of the manuscript prior to publication.
For citation: Zozulya D.R., Skublov S.G., Levashova E.V., Lyalina L.M. Characteristis of the unique Y-HREE-F-rich pegmatite system revealed by zircon geochemistry: a case study from Mt. Ploskaya amazonite deposit, Kola Peninsula. Mineralogy, 2025, 11(1), 43–63. DOI: 10.35597/2313-545X-2025-11-1-4
Received 24.02.2025, revised 03.03.2025, accepted 07.03.2025
D.R. Zozulya, Geological Institute, Kola Science Centre RAS, Apatity, Russia; d.zozulya@ksc.ru
S.G. Skublov, Institute of Precambrian Geology and Geochronology RAS, St. Petersburg, Russia; skublov@yandex.ru
E.V. Levashova, Institute of Precambrian Geology and Geochronology RAS, St. Petersburg, Russia;
L.M. Lyalina, Geological Institute, Kola Science Centre RAS, Apatity, Russia
- Agangi A., Kamenetsky V.S., McPhie J. (2010) The role of fuorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler Range volcanics, South Australia. Chemical Geology, 273, 314–325. https://doi:10.1016/j.chemgeo.2010.03.008
- Aseri A.A., Linnen R.L., Che X.D., Thibault Y., Holtz F. (2015) Effects of fuorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fuxed water-saturated haplogranitic melts. Ore Geology Reviews, 64, 736–746. https://doi.org/10.1016/j.oregeorev.2014.02.014
- Batieva I.D. (1976) Petrology of alkaline granitoids of the Kola Peninsula. Leningrad, Nauka, 224 p. (in Russian)
- Bayanova T.B. (2004) The age of reference geological complexes of the Kola region and duration of magmatic processes. St. Petersburg, Nauka, 172 p. (in Russian)
- Bel’kov I.V. (1958) Y mineralization in amazonite pegmatites of alkali granites of the Kola Peninsula. Voprosy geologii i mineralogii Kol’kogo poluostrova (Problems of Geology and Mineralogy of the Kola Peninsula), 1, 126– 139. (in Russian)
- Bergh S.G., Corfu F., Priyatkina N., Kullerud K., Myhre P.I. (2015) Multiple post-Svecofennian 1750–1560 Ma pegmatite dykes in Archaean-Palaeoproterozoic rocks of the West Troms basement complex, North Norway: geological signifcance and regional implications. Precambrian Research, 266, 425–439. https://doi:10.1016/j. precamres.2015.05.035
- Brookins D.G. (1989) Aqueous geochemistry of rare earth elements. Reviews in Mineralogy and Geochemistry, 21(1), 201–225.
- Burnham A.D., Berry A.J. (2014) The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366, 52–60. https://doi.org/10.1016/j.chemgeo.2013.12.015.
- Cerny P., Ercit S. (2005) The classifcation of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005– 2026. https://doi.org/10.2113/gscanmin.43.6.2005
- Charoy B., Raimbault L. (1994) Zr-rich, Th-rich, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China) – the key role of fuorine. Journal of Petrology, 35, 919–962. https://doi.org/10.1093/ petrology/35.4.919
- Cherniak D.J., Watson E.B. (2003) Diffusion in zircon. Zircon. Reviews in Mineralogy and Geochemistry, 53, 113–143. https://doi.org/10.2113/0530113
- De Hoog J.C.M., Lissenberg C.J., Brooker R.A., Hinton R., Trail D., Hellebrand E. (2014) Hydrogen incorporation and charge balance in natural zircon. Geochimica et Cosmochimica Acta, 141, 472–486. https:// doi.org/10.1016/j.gca.2014.06.033
- Ekambaram V., Brookins D.G., Rosenberg P.E., Emanuel K.M. (1986) Rare-earth element geochemistry of fuorite-carbonate deposits in Western Montana, USA. Chemical Geology, 54, 319–331. https://doi. org/10.1016/0009-2541(86)90146-4
- Fedotova A.A., Bibikova E.V., Simakin S.G. (2008) Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochemistry International, 46, 912–927. https://doi. org/10.1134/S001670290809005X
- Finch R., Murakami T. (1999) Systematics and paragenesis of uranium minerals. Reviews in Mineralogy, 38, 91–179.
- Gerasimovskiy V.I., Nesmeyanova L.I., Kakhana M.M., Khazizova V.D. (1972) Trends in the Zr and Hf distributions for lavas of the East African Rift zones. Geochemistry, 12, 1078–1086.
- Gramaccioli C.M., Diella V., Demartin F. (1999) The role of fuoride complexes in REE geochemistry and the importance of 4f electrons: some examples in minerals. European Journal of Mineralogy, 11, 983–992. https://doi. org/10.1127/ejm/11/6/0983
- Harley S.L., Kelly N.M. (2007) Zircon tiny but timely. Elements, 3(1), 13–18. https://doi.org/10.2113/ gselements.3.1.13
- Hoshino M., Kimata M., Nishida N., Shimizu M., Akasaka T. (2010) Crystal chemistry of zircon from granitic rocks, Japan: genetic implications of HREE, U and Th enrichment. Neues Jahrbuch fur Mineralogie – Abhandlungen, 187(2), 167-188. https://doi. org/10.1127/0077-7757/2010/0177
- Hoskin P.W.O. (1999) SIMS determination of ?g g-1-level fuorine in geological samples and its concentration in NIST SRM 610. Geostandart News, 23, 69–76. https://doi. org/10.1111/j.1751-908X.1999.tb00560.x
- Hoskin P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3), 637-–648. https://doi.org/10.1016/j.gca.2004.07.006
- Kakutani Y., Kohno T., Nakano S., Nishimura A., Hoshino M. (2012) Case study of zircon from a pegmatite in the Tanakami granite pluton, central Japan: occurrence, morphology, texture and chemical composition. Bulletin of the Geological Survey of Japan, 63 (7/8), 203–226. https:// doi.org/10.9795/bullgsj.63.203
- Kalashnikov A.O., Konopleva N.G., Pakhomovsky Y.A., Ivanyuk G.Y. (2016) Rare earth deposits of the Murmansk Region, Russia – a review. Economic Geology, 111, 1529– 1559. http://doi.org/10.2113/econgeo.111.7.1529
- Kalita A.P. (1974) Pegmatites and hydrothermalites of alkali granites of the Kola Peninsula. Moscow, Nedra, 140 p. (in Russian)
- Kaulina T.V., Sinai M.Y., Savchenko E.E. (2015) Crystallogenetic models for metasomatic replacement in zircons: implications for U–Pb geochronology of Precambrian rocks. International Geology Review, 57(11– 12), 1526–1542. https://doi.org/10.1080/00206814.2014.96 1976
- Keppler P. (1993) Infuence of fuorine on the enrichment of high feld strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114, 479–488. https://doi.org/10.1007/bf00321752
- Knoll T., Huet B., Schuster R., Mali H., Ntafos T., Hauzenberger C. (2023) Lithium pegmatite of anatectic origin – a case study from the Austroalpine Unit pegmatite province (Eastern European Alps): Geological data and geochemical modeling. Ore Geology Reviews, 154, 105298. https://doi.org/10.1016/j.oregeorev.2023.105298
- Kudryashov N.M., Skublov S.G., Galankina O.L., Udoratina O.V., Voloshin A.V. (2020) Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). Geochemistry, 80 (3), 125489. https://doi.org/10.1016/j. geoch.2018.12.001
- Levashova E.V., Mamykina M.E., Skublov S.G., Galankina O.L., Li Q.L., Li X.H. (2023) Geochemistry (TE, REE, oxygen) of zircon from leucogranites of the Belokurikhinsky massif, Gorny Altai, as indicator of formation conditions. Geochemistry International, 61 (13), 1323–1339. https://doi.org/10.1134/S001670292311006X
- Levashova E.V., Skublov S.G., Hamdard N., Ivanov M.A., Stativko V.S. (2024) Geochemistry of zircon from pegmatite-bearing leucogranites of the Laghman complex, Nuristan province, Afghanistan. Russian Journal of Earth Sciences, 24, ES2011.
- Levashova E.V., Zozulya D.R., Morozova L.N., Skublov S.G., Serov P.A. (2024) Zircon as an indicator of magmatic-hydrothermal transition in the evolution of rare-metal pegmatite (using the example of the Kolmozero and Polmostundra lithium deposits, Kola Peninsula, Russia). Russian Geology and Geophysics, 65(11), 316–1333. https:// doi.org/10.2113/RGG20244758
- Linnen R.L., Keppler H. (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66, 3293–3301. https:// doi.org/10.1016/S0016-7037(02)00924-9
- Linnen R.L., Samson I.M., Williams-Jones A.E., Chakhmouradian A.R. (2014) Geochemistry of the rare-earth elements, Nb, Ta, Hf, and Zr deposits. In: Treatise on Geochemistry, 2nd ed. Amsterdam, Elsevier, 543–568.
- London D., Hervig R.L., Morgan G.B. (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite – pegmatite systems – experimental results with Macusani glass at 200 Mpa. Contributions to Mineralogy and Petrology, 99, 360–373. https://doi.org/10.1007/bf00375368
- Lunts A.Ya. (1972) Mineralogy, geochemistry and genesis of rare-earth pegmatites of alkali granites of the northwest USSR. Moscow, Nedra, 167 p. (in Russian)
- Lyalina L.M., Selivanova E.A., Savchenko Ye.E., Zozulya D.R., Kadyrova G.I. (2014) Minerals of the gadolinite-(Y)–hingganite-(Y) series in the alkali granite pegmatites of the Kola Peninsula. Geology of Ore Deposits, 56 (8), 675–684. https://doi.org/10.1134/S1075701514080042
- Lyalina L.M., Zozulya D.R., Bayanova T.B., Selivanova E.A., Savchenko Ye.E. (2012) Genetic peculiarities of zircon from pegmatites of Neoarchean alkali granites of the Kola region. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 141(5), 35–51. (in Russian)
- Melentjev G.B. (2019) Sources of abnormally high concentrations of tantalum, beryllium, and yttrium rare earth metals: industrial value and search objectives. Trudy Karel’skogo nauchnogo tsentra RAN (Proceedings of the Karelian Scientifc Center of the Russian Academy of Sciences), 10, 50–61. https:// doi.org/10.17076/geo1128 (in Russian)
- McDonough W.F., Sun S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253. https://doi. org/10.1016/0009-2541(94)00140-4
- Migdisov A.A., Williams-Jones A.E., Wagner T. (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fuoride- and chloride-bearing aqueous solutions at temperatures up to 300 degrees C. Geochimica et Cosmochimica Acta, 73, 7087–7109. https://doi.org/10.1016/j.gca.2009.08.023
- Muller A., Romer R.L., Pedersen R.B. (2017) The Sveconorwegian pegmatite province – thousands of pegmatites without parental granites. The Canadian Mineralogist, 55, 283–315. https://doi.org/10.3749/ canmin.1600075
- Neves J.C., Nunes J.L., Sahama T.G. (1974) High hafnium members of the zircon-hafnon series from the granite pegmatites of Zambezia, Mozambique. Contributions to Mineralogy and Petrology, 48, 73–80. https://doi. org/10.1007/BF00399111
- Pekov I.V., Chukanov N.V., Kononkova N.N., Yakubovich O.V., Massa W., Voloshin A.V. (2009) Tveitite-(Y) and rare-earth enriched fuorite from amazonite pegmatites of Western Keivy, Kola Peninsula, Russia: Genetic crystal-chemistry of natural Ca,REE-fuorides. Geology of Ore Deposits, 51, 595–607. https://doi. org/10.1134/S1075701509070083
- Ramo O.T., Haapala I.J. (1995) One hundred years of rapakivi granite. Mineralogy and Petrology, 52, 129–185. https://doi.org/10.1007/BF01163243
- Shcheglova Т.P., Drugova G.M., Skublov S.G. (2003) Rare-earths elements in garnets and amphiboles of the Keivy block rocks. Proceedings of the Russian Mineralogical Society, 2, 78–86.
- Skublov S.G., Petrov D.A., Galankina O.L., Levashova E.V., Rogova I.V. (2023) Th-rich zircon from a pegmatite vein hosted in the Wiborg rapakivi granite massif. Geosciences, 13 (12), 362. https://doi.org/10.3390/ geosciences13120362
- Skublov S.G., Hamdard N., Ivanov M.A., Stativko V.S. (2024) Trace element zoning of colorless beryl from spodumene pegmatites of Pashki deposit (Nuristan province, Afghanistan). Frontiers in Earth Sciences, 12, 1432222. https://doi.org/10.3389/feart.2024.1432222
- Smith P.E., Tatsumoto M., Farquhar R. (1987) Zircon Lu–Hf systematics and evolution of the Archean crust in the southern Superior Province, Canada. Contributions in Mineralogy and Petrology, 97, 93–104. https://doi. org/10.1007/BF00375217
- Sokolov M.F. (2006) Characterization of Pb and selected trace elements in amazonitic K-feldspar. MSc Theses, Montreal, McGill University, 130 p.
Vokhmentsev A.Ya., Ostroumov A.M., Marin A.B., Platonov A.N., Popov V.A., Tarashtan A.N., Schmakin B.M. (1989) Amazonite. Moscow, Nedra, 192 p. (in Russian) - Voloshin A.V., Pakhomovskii Ya.A. (1986) Minerals and evolution of mineral formation in amazonite pegmatites of the Kola Peninsula. Leningrad, Nauka, 168 p. (in Russian)
- Voloshin A.V., Pakhomovskii Ya.A. (1988) Mineralogy of Ta and Nb in rare metal pegmatites. Leningrad, Nauka, 239 p. (in Russian)
Wang H., He H., Yang W., Bao Z., Liang X., Zhu J., Ma L., Huang Y. (2023) Zircon texture and composition fngerprint HREE enrichment in muscovite granite bedrock of the Dabu ion-adsorption REE deposit, South China. Chemical Geology, 616, 121231. https://doi.org/10.1016/j. chemgeo.2022.121231 - Wang X., Griffn W.L., Chen J. (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44, 65–72. https://doi.org/10.2343/geochemj.1.0043
- Webber K.L., Simmons W.B., Falster A.U., Hanson S.L. (2019) Anatectic pegmatites of the Oxford County pegmatite feld, Maine, USA. The Canadian Mineralogist, 57, 811– 815. https://doi.org/10.3749/canmin.AB00028
- Williams-Jones A.E., Samson I.M., Olivo G.R. (2000) The genesis of hydrothermal fuorite-REE deposits in the Gallinas Mountains, New Mexico. Economic Geology, 95, 327–341. https://doi.org/10.2113/95.2.327
- Yin R., Wang R.C., Zhang A.C., Hu H., Zhu J.C., Rao C., Zhang H. (2013) Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98, 1714–1724. https://doi.org/10.2138/am.2013.4494
- Xia X.-P., Meng J., Ma L., Spencer C.J., Cui Z., Zhang W.-F., Yang Q., Zhang L. (2021) Tracing magma water evolution by H2O-in-zircon: a case study in the Gangdese batholith in Tibet. Lithos, 404–405, 106445. https://doi. org/10.1016/j.lithos.2021.106445
- Zagorsky V.Ye., Makagon V.M., Shmakin B.M. (2003) Systematics of granitic pegmatites. Geologiya i geofzika (Russian Geology and Geophysics), 44 (5), 403– 416. (in Russian)
- Zhao X., Li N-B., Huizenga J.M., Zhang Q-B., Yang Y-Y., Yan S., Yang W., Niu H-C. (2022) Granitic magma evolution to magmatic-hydrothermal processes vital to the generation of HREEs ion-adsorption deposits: constraints from zircon texture, U-Pb geochronology, and geochemistry. Ore Geology Reviews, 146, 104931. https:// doi.org/10.1016/j.oregeorev.2022.104931
- Zirakparvar N.A. (2022) Industrial garnet as an unconventional heavy rare earth element resource: preliminary insights from a literature survey of worldwide garnet trace element concentrations. Ore Geology Reviews, 148, 105033. https://doi.org/10.1016/j.oregeorev.2022.105033
- Zozulya D., Macdonald R., Baginski B., Jokubauskas P. (2022) Nb/Ta, Zr/Hf and REE fractionation in exotic pegmatite from the Keivy province, NW Russia, with implications for rare-metal mineralization in alkali feldspar granite systems. Ore Geology Reviews, 143, 104779. https:// doi.org/10.1016/j.oregeorev.2022.104779
- Zozulya D.R., Zakharov D.O. (2023) Multistage and long-lived (ca. 1000 Ma) magmatic-hydrothermal system of Zr-REE-Nb-Th deposits of the Keivy peralkaline granite complex, Kola Peninsula: updated U-Pb zircon ages and O isotopic composition. Trudy Fersmanovskoy nauchnoy sessii (Proceedings of the Fersman Scientifc Session), 20, 103– 111. https://doi.org/10.31241/FNS.2023.20.011 (in Russian)
MINERALOGY 1 2025