Characterization of Zr-bearing crystalline phases from Rb-bearing model matrix materials
V.E. Eremyashev, G.G. Korinevskaya, S.M. Lebedeva, M.A. Rassomakhin
UDK 544.23:543.42 | https://doi.org/10.35597/2313-545X-2023-9-4-5 | Read PDF (RUS) |
As part of the synthesis of new matrix materials for vitrifcation of highly active radioactive wastes, the crystalline phases formed during rapid cooling from melts of the Na2O–Rb2O–SrO(Ba)–B2O3– SiO2–Al2O3–ZrO2 system with a high Rb and Zr content (up to 10 mol. %) are found and studied. The presence of numerous Zr and Rb-bearing crystals in samples is established by electron microscopy, X-ray diffraction and Raman spectroscopy; their morphology, chemical composition and spectral characteristics are studied. It is concluded that these crystalline phases form due to the excessive content of individual components of the melt and their formation is responsible for the undesirable fnal local heterogeneity and crystallization of matrix materials.
Keywords: radioactive waste, immobilization, matrix materials, crystallization, rubidium, zirconium.
Received 01.12.2023, accepted 08.12.2023
V.E. Eremyashev, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk district, Russia;
South Ural State University (National Research University), Russia; vee-zlat@mail.ru, vee-zlat@mineralogy.ru
G.G. Korinevskaya, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk district, Russia;
South Ural State University (National Research University), Russia;
S.M. Lebedeva, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk district, Russia;
M.A. Rassomakhin, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk district, Russia
Arima M., Edgar A.D. (1980). Stability of wadeite (Zr2K4Si6O18) under upper mantle conditions: petrological implications. Contribution to Mineralogy and Petrology, 72(2), 191–195.
Caurant D., Loiseau P., Majerus O., Aubin-Chevaldonnet V., Bardez I., Quintas A. (2009) Glasses, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes. New York, Nova Science Publishers, 445 p.
Chen H., Marcial J., Ahmadzadeh M., Patil D., McCloy J.S. (2020) Partitioning of rare earths in multiphase nuclear waste glass-ceramics. International Journal of Applied Glass Science, 11, 660–675.
Donald I.W. (2010) Waste immobilization in glass and ceramic based hosts: tadioactive, toxic and hazardous wastes. John Wiley & Sons, Ltd, 507 р.
Eremyashev V.E., Zherebtsov D.A., Osipova L.M., Danilina E.I. (2016) Thermal study of melting, transition and crystallization of rubidium and caesium borosilicate gasses. Ceramics International, 42, 18368–18372.
Eremyashev V.E., Zherebtsov D.A., Brazhnikov M.P., Zainullina R.T., Danilina E.I. (2020) Cerium infuence on the thermal properties and structure of high-alkaline borosilicate glasses. Journal of Thermal Analysis and Calorimetry, 139(2), 991–997.
Eremyashev V.E., Mazur A.S., Tolstoi P.M., Osipova L.M. (2019) Structure of rubidium borosilicate glasses studied by nuclear magnetic resonance spectroscopy. Inorganic Materials, 55(5), 500–505.
Eremyashev V.E., Rassomakhin M.A., Korinevskaya G.G., Zhivulin D.E., Lebedeva S.M., Danilina E.I., Osipov A.A., Bocharov V.N. (2023) Synthesis and study of zirconium-containing sodium-cesium aluminoborosilicate matrix materials. Journal of Non-Crystalline Solids, 617, 122497.
Fewox C. S., Kirumakki S. R., Clearfeld A. (2007) Structural and mechanistic investigation of rubidium ion exchange in potassium zirconium trisilicate. Chemistry of Materials, 19(3), 384–392.
Guo Y., Liu C., Wang J., Ruan J., Li X., Han J., Xie J. (2020) Effect of ZrO2 crystallization on ion exchange properties in aluminosilicate glass. Journal of the European Ceramic Society, 40(5), 2179–2184.
Keshavarzi A, Russel C. (2012) The effect of TiO2 and ZrO2 addition on the crystallization of Ce3+ doped yttrium aluminum garnet from glasses in the system Y2O3/ Al2O3/SiO2/AlF3. Materials Chemistry and Physics, 132(2), 278–83.
Kyono A., Kimata M. (2001) Refnement of the crystal structure of a synthetic non-stoichiometric Rb-feldspar. Mineralogical Magazine, 65(4), 523–531.
Lafuente B., Downs R.T., Yang H., Stone N. (2015) The power of databases: the RRUFF project. http://rruff.info (accessed 21 February 2023).
Singh B.K., Hafeez M.A., Kim H., Hong S., Kang J., Um W. (2021) Inorganic waste forms for effcient immobilization of radionuclides. ACS ES&T Engineer, 1(8), 1149–1170.
Vienna J.D., Collins E.D., Crum J.V., Ebert W.L., Frank S.M., Garn T.G., Gombert D., Jones R., Jubin R.T., Maio V., Marra J.C., Maty J., Nenoff T.M., Riley B.J., Sevigny G.J., Soelberg N., Strachan D., Thallapally P.K., Westsik Jr. J.H. (2015) Closed fuel cycle waste treatment strategy, FCRD-MRWFD-2015-000674, rev. 0, PNNL-24114. Pacifc Northwest National Laboratory, Richland, WA. https://www.pnnl.gov/main/ publications/ external/technical_reports/PNNL-24114.pdf
MINERALOGY 4 2023