Experimental modeling of phase transformations in a weakly ordered carbon substance under impact treatment
V.V. Ulyashev, T.G. Shumilova, B.A. Kulnitskiy, S.I. Isaenko, V.D. Blank
UDK 549.211, 523.681.8 | https://doi.org/10.35597/2313-545X-2020-6-3-7 | Read PDF (RUS) |
The results of experimental modeling of impact transformation of weakly ordered carbon substance by short-pulse laser radiation on glassy carbon are presented. The experiments yielded extremely high temperatures of ~14500 K and pressures of ~300 GPa, which are comparable with temperatures and pressure of the formation of large Earth’s meteorite craters. The analysis of the transformation products of a target substance showed melting of glassy carbon, its further solidifcation, partial crystallization upon cooling and formation of polyphase composites, which contain hexagonal nanocrystalline graphite and hollow onion-like and one- and two-layer fullerene-like structures. The synthetic products, including high-pressure carbon polymers and hollow onionlike multi-layer fullerene-like structures are of interest as carbon materials, which form at ultrahigh pressures and temperatures. The results of experimental modeling can also be used for the comparison with natural products to explain the formation of natural high-pressure carbon composites after non-graphite precursor.
Figures 7. Tables 1. References 64.
Key words: impact metamorphism, short-pulse laser exposure, transformation, carbon melting, glassy carbon, graphitization, high-resolution transmission electron microscopy, Raman spectroscopy
V.V. Ulyashev, Institute of Geology Komi SC UB RAS, ul. Pervomaiskaya 54, Syktyvkar, 167610 Russia; vaskom77@mail.ru
T.G. Shumilova, Institute of Geology Komi SC UB RAS, ul. Pervomaiskaya 54, Syktyvkar, 167610 Russia;
B.A. Kulnitskiy, Technological Institute of Superhard and Novel Carbon Materials, ul. Tsentral‘naya 7a, Troitsk, Moscow, 108840 Russia
S.I. Isaenko, Institute of Geology Komi SC UB RAS, ul. Pervomaiskaya 54, Syktyvkar, 167610 Russia;
V.D. Blank, Technological Institute of Superhard and Novel Carbon Materials, ul. Tsentral‘naya 7a, Troitsk, Moscow, 108840 Russia
Abramov D.V., Arakelyan S.M., Galkin A.F., Kvacheva L.D., Klimovskiy I.I., Kononov M.A., Mikhalit-syn L.A., Kucherik A.O., Prokoshev V.G., Savrans-kiy V.V. (2006) Melting of carbon heated by focused laser radiation in air at atmospheric pressure and temperature below 4000 K. Journal of Experimental and Theoretical Physics Letters (JETP Letters), 84(5), 258–261.
Agranat M.B., Ashitkov S.I., Kirillin A.V., Kostanovskiy A.V., Fortov V.Ye., Anisimov S.I., Kondratenko P.S. (1997) Formation of amorphous carbon on melting of microcrystalline graphite by picosecond laser pulses. Journal of Experimental and Theoretical Physics Letters (JETP Letters), 66(10), 699–703.
Asinovskii E.I., Kirillin A.V., Kostanovskiy A.V. (2002) Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures. Physics-Uspekhi, 45(8), 869–882. (in Russian)
Basharin A.Yu., Dozhdikov V.S., Dubinchuk V.T., Kirillin A.V., Lysenko I.Yu., Turchaninov M.A. (2009) Phases formed during rapid quenching of liquid carbon. Technical Physics Letters, 35(5), 428–431.
Belenkov Ye.A., Greshnyakov V.A. (2013) Classifcation of structural modifcations of carbon. Physics of the Solid State, 55(8), 1754–1764.
Bleu Y., Bourquard F., Tite T., Loir A. S., Maddi C., Donnet C., Garrelie F. (2018) Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Frontiers in Chemistry, 21(6), 572–590.
Bonse J., Hohm S., Kirner S. V., Rosenfeld A., Kruger J. (2017) Laser-induced periodic surface structures – a scientifc evergreen. IEEE Journal of Selected Topics in Quantum Electronics, 23(3), 9000615.
Borimchuk N.I., Zelyavskiy V.B., Kurdyumov A.V., Ostrovskaya N.F., Treflov V.I., Yarosh V.V. (1991) [Mechanism of direct phase transformations of soot and coal into diamond under shock compression]. Doklady Akademii nauk [Reports Academy of Sciences], 32(1), 95–98. (in Russian)
Boustie M., Berthe L., de Resseguier T., Arrigoni M. (2008) Laser shock waves: fundamentals and applications. 1st International symposium on laser ultrasonics: science, technology and applications. Montreal, Canada.
Bundy F.P., Bassett W.A., Weathers M.S., Hemley R.J., Mao H.U., Goncharov A.F. (1996) The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon, 34(2), 141–153.
Cancado L.G., Takai K. (2006) General equation or determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters, 88, 163106.
Chao E.T.C., Shoemaker E.M., Madsen B.M. (1960) First natural occurrence of coesite. Science, 132, 220–222.
Fortov V.E., Korobenko V.N., Savvatimskiy A.I. (2011) Liquid metals and liquid carbon: some similar properties at high temperatures. EPJ Web of Conferences, 15, 02001.
French B.M. (1998) Traces of catastrophe: a handbook of shock-metamorphic efects in terrestrial meteorite impact structures. Houston, Lunar and Planetary Institute, 954, 120 p.
French B.M., Koeberl C. (2010) The convincing identifcation of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Science, 98, 123–170.
Gerasimov M.V., Ivanov B.A., Yakovlev O.I., Dikov Yu.P. (1999) Physics and chemistry of impacts. Laboratory Astrophysics and Space Research, 236, 279–330.
Ghiringhelli L.M., Los J.H., Meijer E.J., Fasolino A., Frenkel D. (2005) Liquid carbon: structure near the freezing line. Journal of Physics: Condensed Matter, 17(45), 3619– 3624.
Giessibl F. (2003) Advances in Atomic Force Microscopy. Reviews of Modern Physics, 75(3), 949–983.
Graf D., Molitor F., Ensslin K., Stampfer C., Jungen A., Hierold C., Wirtz L. (2007) Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Letters, 7(2), 238–242.
Grigor’yants A.G., Safonov A.N. (1987) [Laser technology and technology]. Moscow, Vysshaya shkola, 191 p. (in Russian)
Haaland D.M. (1976) Determination of the solid-liquid-vapor triple point pressure of carbon. Technical report Sandia national laboratories. Albuquerque, New Mexico, US Energy Research and Development Administration, 45 p.
Harris P.J.F. (1997). Structure of non-graphitising carbons. International Materials Reviews, 42(5), 206–218.
Harris P.J.F. (2004) Fullerene-related structure of commercial glassy carbons. Philosophical Magazine, 84(29), 3159–3167.
Harris P.J.F. (2005) New perspectives on the structure of graphitic carbons. Critical Reviews in Solid State and Material Sciences, 30, 235–255.
Jenkins G. M., Kawamura K. (1971) Structure of glassy carbon. Nature, 231, 175–176.
Katsumata Y., Morita T., Morimoto Y., Shintani T., Saiki T. (2014) Selforganization of a periodic structure between amorphous and crystalline phases in a GeTe thin flm induced by femtosecond laser pulse amorphization. Applied Physics Letters, 105(3), 031907.
Kenkmann T., Poelchau M.H., Wulf G. (2014) Structural geology of impact craters. Journal of Structural Geology, 62, 156–182.
Korochantsev A.V. (2004) [Impact transformation of bitumen: an application to organic matter of meteorites and impactites]. Abstract of Dissertation of Candidate of Geological and Mineralogical Sciences. Moscow, Vernadsky Institute of Geochemistry and Analytical Chemistry, 27 p. (in Russian)
Kurdyumov A.V., Britun V.F., Yarosh V.V., Danilen-ko A.I., Zelyavskiy V.B. (2012) The infuence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond. Journal of Superhard Materials, 34(1), 19–27.
Langenhorst F. (2002) Shock metamorphism of some minerals: basic introduction and microstructural observations. Bulletin of Czech Geological Survey, 77(4), 265–282.
Langenhorst F., Deutsch A. (1998) Mineralogy of astroblemes – terrestrial impact craters. Mineral matter in space, mantle, ocean foor, biosphere, environ-mental management, and jewelry (ed. Marfunin A.S.). berlin, Springer, 95–119.
Langenhorst F., Deutsch A. (2012) Shock metamorphism of minerals. Elements, 8, 31–36.
Langenhorst F., Stofer D. (1994) Shock metamorphism of quartz in nature and experiment: I. basic observations and theory. Meteoritics, 29, 155–181.
Li Q.-Q., Zhang X., Han W.-P., Lu Y., Shi W., Wu J.-B., Tan P.-H. (2015) Raman spectroscopy at the edges of multilayer graphene. Carbon, 85, 221–224.
Lopez-Lorente A.I., Simonet B.M., Valcarcel M. (2014) Raman spectroscopic characterization of single walled carbon nanotubes: infuence of the sample aggregation state. Analyst, 139(1), 290–298.
Lyutoyev V.P., Tikhomirova N.S. (2008) [Silica modifcations in impactites of the Kara astrobleme]. Struktura i raznoobraziye mineral’nogo mira: materialy mezhdunarodnogo seminara [Structure and diversity of the mineral world: materials of international seminar]. Syktyvkar, Geoprint, 418–421. (in Russian)
Martirosyan O.V. (2014) [Factors and mechanisms of structural evolution of organic mineraloids]. Abstract of Dissertation of Candidate of Geological and Mineralogical Sciences. Syktyvkar, 38 p. (in Russian)
Masaytis V.L., Gnevushev M.A., Futergendler S.I. (1972) [Diamonds in impactites of the Popigay meteorite crater]. Zapiski vsesoyuznogo mineralogicheskogo obshchestva [Notes of the All-Union Mineralogical Society], 101(1), 108–112. (in Russian)
Masaytis V.L., Gnevushev M.A., Shafranovskiy G.I.(1979) [Mineral assemblages and mineral criteria of genesis of astroblemes]. Zapiski vsesoyuznogo mineralogicheskogo obshchestva [Notes of the All-Union Mineralogical Society], 108(3), 257–253. (in Russian)
Masaytis V.L., Mashchak M.S., Raykhlin A.I. Selivanovskaya T.V., Shafranovskichy G.I. (1998) [Diamond-bearing impactites of the Popigay astrobleme]. St. Petersburg, VSEGEI, 179 p. (in Russian)
Melosh H.J. (1989) Impact cratering, a geological process. New York, Oxford University Press, 245 p.
No Y.-S., Choi H.K., Kim J.-S., Kim H., Yu Y.-J., Choi C.-G., Choi J.S. (2018) Layer number identifcation of CVD-grown multilayer graphene using Si peak analysis. Scientifc Reports, 8, 571.
Pesin L.A. (2002) Review: Structure and properties of glass-like carbon. Journal of Materials Science, 37, 1–28.
Puerto D. Garcia-Lechuga M., Hernandez-Rueda J., Garcia-Leis A., Sanchez-Cortes S., Solis J., Siegel J. (2016) Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon. Nanotechnology, 27, 265602.
Sadezky A., Muckenhuber H., Grothe H., Niessner R., Poschl U. (2005) Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43, 1731–1742.
Savvatimskiy A. (2009) Experimental electrical resistivity of liquid carbon in the temperature range from 4800 to 20000 K. Carbon, 47(10), 2322–2328.
Savvatimskiy A. (2015) Carbon at high temperatures. Springer Series in Material Science, 257 p.
Shiraishi M. (1984) Graphitization of carbon. Ch. 3 Kaitei tansozairyo minyumon. Tokio, Carbon Society of Japan, p. 29.
Shumilova T., Kis V. , Masaitis V. , Isaenko S., Makeev B. (2014) Onion-like carbon in impact diamonds from Popigai astrobleme. European Journal of Mineralogy, 26, 267–277.
Shumilova T.G., Isaenko S.I., Ulyashev V.V., Kazakov V.A., Makeev B.A. (2018) After-coal diamonds: An enigmatic type of impact diamonds. European Journal of Mineralogy, 30(1), 61–76.
Shumilova T.G., Isaenko S.I. (2019) Nanostructure of sugar-like after-coal impact diamonds. Mineralogy and Petrology, 11 3, 583–592.
Shumilova T., Maximenko N., Zubov A., Kovalchuk N., Ulyashev V., Kis V. (2019) Varieties of impactites and impact diamonds of the Kara meteorite crater (Pay-Khoy, Russia). IOP Conference Series: Earth & Environmental Sciences, 362, 012043.
Shumilova T.G., Ulyashev V.V., Kazakov V.A., Isaenko S.I., Svetov S.A., Chazhengina S.Ya., Kovalchuk N.S. (2020) Karite – diamond fossil: A new type of natural diamond. Geoscience Frontiers, 11(4), 1163–1174.
Sobolev N.V. (2006) Coesite as an indicator of ultrahigh pressures in the continental lithosphere. Russian Geology and Geophysics, 1, 94–104.
Stofer D. (1971) Progressive metamorphism and classifcation of shocked and brecciated crystalline rocks at impact craters. Journal of Geophysical Research, 76(23), 5541–5551.
Stofer D., Langenhorst F. (1994) Shock metamorphism in nature and experiment: basic observations and theory. Meteoritics, 29, 155–181.
Ulyashev V.V., Shumilova T.G., Kul’nitskiy B.A., Perezhogin I.A., Blank V.D. (2018a) [Nanostructured features of carbon polyphase aggregates of after-coal impact metamorphism products]. Vestnik instituta geologii Komi NTS UrO RAN [Bulletin of the Institute of Geology of Komi Science Center UB RAS], 284(8), 26–33. (in Russian)
Ulyashev V.V., Veligzhanin A.A., Shumilova T.G., Kul’nitskiy B.A., Perezhogin I.A., Blank V.D. (2018б) [Study of impact carbon matter of the Kara astrobleme by small-angle scattering of synchrotron radiation]. Mineralogiya [Mineralogy], 4(4), 41–48. (in Russian)
Vishnevskiy S.A. (2007) [Astroblemes]. Novosibirsk, ООО Nonpararell, 288 p. (in Russian)
Vishnevskiy S.A., Afanas’yev V.P., Pal’chik N.A., Argunov K.P. (1997) [Impact diamonds. Features, origin and signifcance]. Novosibirsk, OIGGM SЩ RAN NITS, 53 p. (in Russian)
Wackerle J. (1962) Shock wave compression of quartz. Journal of Applied Physics, 33, 922–937.
Yezerskiy V.A. (1982) [Shock-metamorphosed carbonaceous substance in impactites]. Meteoritika [Meteoritics], 41, 134–140. (in Russian)
Yezerskiy V.A. (1986) [Ultrabaric polymorphs arising from shock conversion of coals]. Zapiski vsesoyuznogo mineralogicheskogo obshchestva [Notes of the All-Union Mineralogical Society], 4(115), 26–33. (in Russian)
MINERALOGY № 3 2020