Microbial diversity in siliceous-ferruginous sedimentary rocks from the Urals massive sulfde deposits: a review
N.R. Ayupova
UDK 55:553.3:550.72 | https://doi.org/10.35597/2313-545X-2024-10-4-2 | Reed PDF (RUS) |
Paleozoic siliceous-ferruginous oxide sedimentary rocks of the Urals massive sulfde deposits contain well-preserved textural and structural evidence indicating the role of microorganisms in their formation. Filamentous, rod-shaped, spherical and tubular micron-scale bacterial forms mineralized with hematite, hematite-siliceous and siliceous material are described. The flamentous forms are morphologically dominant. Authigenic apatite, Mn-calcite, Ti oxides, illite and rare earth minerals (phosphates and carbonates) are constantly associated with bacteriomorphic structures. The structures of fossil bacteria based on their size, shape, cell division, distribution in colonies and comparison with ferruginous sediments of modern hydrothermal systems and massive sulfde deposits worldwide indicate that they correspond to mineralized stalks of iron bacteria Leptothrix ochracea and Gallionella ferruginea, coccoidal forms and sulfur-oxidizing Thiobacillus Ferrooxidans and giant Beggiatoa-like organisms. These observations indicate bacterial biocatalysis in the processes of halmyrolysis of sulfdes and hyaloclasts during the formation of iron oxide deposits.
Received 21.08.2024, revised 11.10.2024, accepted 25.10.2024
Keywords: microbial structures, mineralized bioflms and glycocalyx, ferruginous oxide sedimentary rocks, massive sulfde deposits.
Funding. Field trips were conducted in frame of state contract no. 122031600292-6. The mineralogical study was supported by the Russian Science Foundation (project no. 22-17-00215).
Acknowledgements. The author is grateful to the Candidate of Geological–Mineralogical sciences O.P. Shilovsky for SEM images.
Confict of interest. The author declare that she has no conficts of interest.
Author contribution. Conceptualization, investigation, analytical works, writing – original draft, visualization, writing – review & editing.
For citation: Ayupova N.R. Microbial diversity in siliceous-ferruginous sedimentary rocks from the Urals massive sulfde deposits: a review. Mineralogy, 2024, 10(4), 41–59. DOI: 10.35597/2313-545X-2024-10-4-2
N.R. Ayupova, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Miass, Chelyabinsk region, 456317 Russia; aupova@mineralogy.ru
- Al-Hanbali H., Sowerby S., Holm N.G. (2001) Biogenicity of silicifed microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets. Earth Planetary Scince Letters, 191, 213– 218. DOI: 10.1016/S0012-821X(01)00421-6
- Alt J.C. (1988) Hydrothermal oxide and nontronite deposits on seamounts in the Eastern Pacifc. Marine Geology, 81, 227–239. https://doi.org/10.1016/0025-3227(88)90029-1
- Alt J.C., Mata P. (2000) On the role of microbes in the alteration of submarine basaltic glass: A TEM study. Earth and Planetary Science Letters, 181, 301–313. https://doi. org/10.1016/S0012-821X(00)00204-1
- Anderson C.R., Pedersen K. (2003) In situ growth of Gallionella bioflms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology, 1, 169–178. https://doi. org/10.1046/j.1472-4669.2003.00013.x
- Ayupova N.R., Maslennikov V.V, Artemyev D.A., Melekestseva I.Yu., Belogub E.V. (2024) The fate of “immobile” Ti in hyaloclastites: an evidence from silica–iron-rich sedimentary rocks of the Urals Paleozoic massive sulfde deposits. Minerals 14(9), 939. https://doi. org/10.3390/min14090939
- Ayupova N.R., Maslennikov V.V. (2005) Halmyrolitites of the Uzelga ore feld. Miass, Institute of Mineralogy UB RAS, 199 p. (in Russian)
- Ayupova N.R., Maslennikov V.V., Kotlyarov V.A., Maslennikova S.P., Danyushevsky L.V., Large R. (2017) Se and In minerals in the sbmarine oxidation zone of the massive sulfde orebody of the Molodezhnoe copper–znc massive sulfde deposit, Southern Urals. Doklady Earth Sciences 473(1), 318–322.
- Ayupova N.R., Maslennikov V.V., Shilovskikh V. V. (2022) Authigenic titanium mineralization as a refection of halmyrolysis of carbonate-sulfde-hyaloclastite sediments in the pyrite-bearing felds of the Urals. Litosfera (Lithosphere), 22(6), 847–858 (in Russian).
- Ayupova N.R., Maslennikov V.V., Tessalina S.G., Shilovsky O.P., Sadykov S.A., Hollis S.P., Danyushevsky L.V., Safna N.P., Statsenko E.O. (2017) Tube fossils from gossanites of the Urals VHMS deposits, Russia: authigenic mineral assemblages and trace element distributions. Ore Geology Reviews, 85, 107–130. https://doi.org/10.1016/j. oregeorev.2016.08.003
- Bacterial paleontology (2021). Ed. Rozanov A.Yu. Moscow, Russian Academy of Science, 124 p. (in Russian)
- Banerjee N.R., Furnes H., Muehlenbachs K., Staudigel H., de Wit M. (2006) Preservation of 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth and Planetary Sciences Letters, 241, 707–722. doi:10.1016/j. epsl.2005.11.011
- Banerjee N.R., Izawa M.R.M., Sapers H.M., Whitehouse M.J. (2010) Geochemical biosignatures preserved in microbially altered basaltic glass. Surface and Interface Analysis, 43, 452–457. https://doi.org/10.1002/ sia.3577
- Binns R.A., Scott S. D., Bogdanov Y.A., Lisitzin A.P., Gordeev V.V., Gurvich E.G., Finlayson E.J., Boyd T., Dot-ter L.E., Wheller G.E., Muravyev K.G. (1993) Hydrothermal oxide and gold rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Economic Geology, 88, 2122–2153.
- Bogdanov Yu.A., Lisitsyn A.P., Sagalevich A.M., Gurvich E.G. (2006) Hydrothermal ore genesis of the ocean foor. Moscow, Nauka, 527 p. (in Russian)
- Boyd T., Scott S.D. (2001) Microbial and hydrother-mal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochemical Transactions, 7. doi: 10.1039/b105277m.
- Constantinou G., Govett G.J.S. (1973) Geology, geochemistry, and genesis of Cyprus sulfde deposits. Economic Geology, 68, 843–858.
- Davidson G.J., Stolz A.J., Eggins S.M. (2001) Geochemical аnatomy of silica iron exhalites: evidence for hydrothermal oxyanion cycling in response to vent fuid redox and thermal evolution (Mt. Windsor Subprovince, Australia). Economic Geology, 96, 1201–1226. DOI: 10.2113/gsecongeo.96.5.1201
- Dekov V.M., Petersen S., Garbe-Schonberg C.D., Kamenov G.D., Perner M., Kuzmann E., Schmidt M. (2010) Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: the Lilliput hydrothermal feld (9°33’S, Mid-Atlantic Ridge). Chemical Geology, 278, 186– 200. DOI: 10.1016/j.chemgeo.2010.09.012
- Duhig N.C., Davidson G.J., Stolz J. (1992) Microbial involvement in the formation of Cambrian sea-foor silica-iron oxide deposits, Australia. Geology, 20, 511–514.
- Edwards C.T., Pufahl P.K., Hiatt E.E., Kurtis K.T. (2012) Paleoenvironmental and taphonomic controls on the occurrence of Paleoproterozoic microbial communities in the 1.88 Ga Ferriman Group, Labrador Trough, Canada. Precambrian Research, 212–213, 91–106. http://dx.doi. org/10.1016/j.precamres.2012.04.020.
- Edwards K., Rogers D., Wirsen C.O., McCollom T.M. (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithautotrophic ? and ? proteobacteria from the deep sea. Applied and Environmental Microbiology, 69, 2906–2913. DOI: 10.1128/ AEM.69.5.2906-2913.2003
- Emerson D., Moyer C.L. (2002) Neutrophilic Fe-oxidizing bacteria are abundant and play a major role in Fe-oxide deposition at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition. Applied and Environmental Microbiology, 68(6), 3085–3093. DOI: 10.1128/AEM.68.6.3085-3093.2002.
- Emerson D., Weiss J.V. (2004) Bacterial Iron Oxidation in Circumneutral Freshwater Habitats: Findings from the Field and the Laboratory. Geomicrobiology, 21(6), 405–414.
- Espejo R.T., Escobar B., Jedlicki E., Uribe P., Badilla-Ohlbau A. (1988) Oxidation of ferrous iron and elemental sulfur by Thiobacillus Ferrooxidans. Applied and Environmental Microbiology, 54, 1694-1699.
- Fisk M.R/, Storrie-Lombardi M/C., Douglas S., Popa R., McDonald G., Di Meo-Savoie C. (2003) Evidence of biological activity in Hawaiian subsurface basalts. Geochemistry, Geophysics Geosystems, 4(4). DOI: 10.1029/2003GC000387.
- Fortin D., Ferris F.G., Scott S.D. (1998) Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacifc Ocean. American Mineralogist 83, 1399–1408. DOI: 10.2138/am-1998-11-1229
- Furnes H., Muehlenbachs K., Tumyr O., Torsvik T., Xenophontos C. (2001) Biogenic alteration of volcanic glass from Troodos ophiolite, Cyprus. Journal of the Geological Society 158, 75–84.
- Ghiorse W.C. (1984) Biology of iron- and manganese-depositing bacteria. Annual Review of Microbiology, 38, 515–550. DOI: 10.1146/annurev.mi.38.100184.002503.
- Goodfellow W.D., Franklin J.M. (1993) Geology, mineralogy, and chemistry of sediment-hosted clastic massive sulfdes in shallow cores, Middle Valley, Northern Juan de Fuca Ridge. Economic Geology, 88, 2037–2068. https://doi.org/10.2113/gsecongeo.88.8.2037
- Grenne T., Slack J.F. (2003) Bedded jaspers of the Ordovician Lokken ophiolite, Norway: seafoor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Mineralium Deposita, 38, 625–639. DOI: 10.1007/ s00126-003-0346-3
- Grenne T., Slack J.F. (2005) Geochemistry of jasper beds from the Ordovician Lokken Ophiolite, Norway: origin of proximal and distal siliceous exhalites. Economic Geology, 100, 1511–1527. DOI: 10.2113/100.8.1511
- Halbach M, Koschinsky A, Halbach P. (2001). Report on the discovery of Gallionella ferruginea from an active hydrothermal feld in the deep sea. InterRidge News, 10, 18–20
- Hallbeck L., Pedersen K. (1995) Benefts associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalkforming and non-stalk-forming strain and bioflm studies in situ. Microbiol Ecology, 30, 257–268. DOI: 10.1007/BF00171933
- Hanert H.H. (2002) Bacterial and chemical iron oxide deposition in a shallow bay on Palaea Kameni, Santorini, Greece: microscopy, electron probe microanalysis, and photometry of in situ experiments. Geomicrobiology Journal, 19, 317–342. DOI: 10.1080/01490450290098405
- Hannington M.D., Galley A.G., Herzig P.M., Petersen S. (1998) Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfde deposits. In Herzig P.M. et al. (Eds.) Proceedings of the Ocean Drilling Program, Scientifc Results: 158, 389–415.
- Hein J.R., Clague D.A., Koski R.A., Embley R.W., Duhnam R.E. (2008) Metalliferous sediment and a silica– hematite deposit within the Blanco Fracture Zone, Northeast Pacifc. Marine Georesources & Geotechnology, 26, 317– 339. DOI: 10.1080/10641190802430986
- Hekinian R., Hoffert M., Larque P. , Chemine J.L., Stoffers P., Bideau D. (1993) Hydrothermal Fe and Si oxyhydroxide deposits from South Pacifc intraplate volcanoes and East Pacifc Rise axial and off-axial regions. Economic Geology, 88, 2099–2121.
- Herzig P.M., Hannington M.D., Scott S.D., Maliotis G., Rona P.A., Thompson G. (1991) Gold-rich sea-foor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge. Economic Geology, 86, 1747–1755. http://dx.doi. org/10.2113/gsecongeo.86.8.1747.
- Holm N.G. (1987). Possible biological origin of banded iron-formations from hydrothermal solutions. Original of life and evolution of the biosphere, 17, 229–250.
- Iizasa K., Kawasaki K., Maeda K., Matsumoto T., Saito N., Hirai K. (1998) Hydrothermal sulfde-bearing Fe-Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacifc. Marine Geology, 145, 1–21. https://doi.org/10.1016/s0025-3227(97)00112-6
- Jambor J.L., Dutrizac J.E. (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chemical Reviews, 98 (7), 2549–2585.
- Juniper S.K., Fouquet Y. (1988) Filamentous iron-silica deposits from modern and ancient hydrothermal sites. The Canadian Mineralogy, 26, 859–869.
- Kalogeropoulos S.I., Scott S.D. (1983) Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Economic Geology Monograph, 5, 412–432.
- Kalogeropoulos S.I., Scott S.D. (1989) Mineralogy and geochemistry of an Archean tuffaceous exhalite: the Main Contact Tuff, Millenbach mine area, Noranda, Quebec. Canadian Journal of Earth Sciences, 26, 88–105.
- Kasama T., Murakami T. (2001). The effect of microorganisms on Fe precipitation rates at neutral pH. Chemical Geology, 180, 117–128. https://doi.org/10.1016/ S0009-2541(01)00309-6
- Kennedy C.B., Scott S.D., Ferris F.G. (2003) Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, north-east Pacifc Ocean. Geomicrobiology, J.20, 199–214. https://doi. org/10.1080/01490450303873
- Kohler B., Singer A., Stoffers P. (1994) Biogenic nontronite from marine white smoker chimneys. Clays and Clay Minerals, 42, 698–701.
- Konhauser K. (2006). Introduction to Geomicrobiology. Maldon, Oxford, Carlton, Blackwell Publishing. 425 p.
- Konhauser K.O., Ferris F.G. (1996) Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: Implications for Precambrian iron formations. Geology, 24(4), 323–326.
- Krajewski K.P., Cappellen P.V., Trichet J., Kuhn O., LuCas J., Martin-Algarra A., Prevot L., Tewari V.C., Gas-par L., Knight R.I. (1994) Biological processes and apatite formation in sedimentary environments. Eclogae Geologicae Helvetiae, 87, 701–746.
- Little C.T.S., Glynn S.E.J., Mills R.A. (2004) Four-Hundred-and-Ninety-million year record of bacteriogenic iron oxide precipitation at sea-foor hydrothermal vent. Geomicrobiology Journal, 21, 415–429. doi: 10.1080/01490450490485845
- Lowenstam H.A. (1981) Minerals formed by organisms. Science, 211, 1126–1131.
- Lowenstam H.A., Weiner S. (1989). On Biomineralization. New York, Oxford University Press, 324 p.
- Lupton J.E., Delaney J.E., Johnson H.P., Tivey M.K. (1985) Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature, 316, 621–623.
- Maslennikov V.V. (1999) Sedimentogenesis, halmyrolysis and ecology of massive sulfde paleohydrothermal felds (on the example of the Southern Urals). Miass, Geotur, 348 p. (in Russian)
- Maslennikov V.V., Ayupova N.R. (2007) Siliceous-ferruginous rocks of the Uzelginsky massive sulfde feld (Southern Urals). Lithosphere, 2, 106–129 (in Russian)
- Maslennikov V.V., Ayupova N.R., Herrington R.J., Danyushevskiy L.V., Large R.R. (2012) Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals. Ore Geology Reviews, 47, 5–41. https://doi. org/10.1016/j.oregeorev.2012.03.008
- Maslennikov V.V., Ayupova N.R., Safna N.P., Tseluyko A.S., Melekestseva I.Yu., Large R.R., Herrington R.J., Kotlyarov V.A., Blinov I.A., Maslennikova S.P., Tessalina S.G. (2019) Mineralogical features of orediagenites in the Urals massive sulfde deposits, Russia. Minerals,9(3), 150. https://doi.org/10.3390/min9030150
- Maslennikov V.V., Cherkashov G.A., Firstova A.V., Ayupova N.R., Beltenev V.E., Melekestseva I.Yu., Artemyev D.A., Tseluyko A.S., Blinov I.A. (2023) Trace element assemblages of pseudomorphic iron oxyhydroxides of the Pobeda-1 hydrothermal feld, 17°08.7’ N, Mid-Atlantic Ridge: the development of a halmyrolysis model from LA-ICP-MS data. Minerals, 12(19). DOI: 10.3390/min13010004
- Maslennikov V.V., Zaykov V.V. (1991) On the destruction and oxidation of sulfde hills on the bottom of the Ural paleoocean. Doklady AN SSSR, 319(6), 1434–1437 (in Russian)
- Mills R.F., Elderfeld H. (1995) Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge. Geochimica Cosmochimica Acta, 59(17), 3511–3524. https://doi. org/10.1016/0016-7037(95)00224-N.
- Perner M., Seifert R., Weber S., Koschinsky A., Schmidt K. (2007) Microbial CO2 fxation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal feld, southern Mid-Atlantic Ridge (9 degrees S). Environmental Microbiology, 9(5):1186-201 DOI: 10.1111/j.1462-2920.2007.01241.x
- Phoenix V.R., Konhauser K.O. (2008) Benefts of bacterial biomineralization. Geobiology, 6, 303–308. DOI: 10.1111/j.1472-4669.2008.00147.x.
- Revan M.K., Genc Yu., Delibas O., Maslennikov V.V., Ayupova N.R., Zimitoglu O. (2019) Mineralogy and geochemistry of metalliferous sedimentary rocks from the Upper Cretaceous VMS deposits of the Eastern Pontides (NE Turkey). Turkish Journal of Earth Sciences, 28, 299– 327. doi: 10.3906/yer-1805-31.
- Robertson A.H.F., Boyle J.F. (1983). Tectonic setting and origin of metalliferous sediments in the Mesozoic Tethyan ocean: In Rona P., et al. (Eds.) In: Hydrothermal Processes at Seafoor Spreading Centres. NATO Adv. Res. Inst., p. 595-664.
- Sagemann J., Bale S.J., Briggs D.E.G., Parkes R.J. (1999) Controls on the formation of authigenic minerals in association with decaying organic matter: an experimental approach. Geochimica Cosmochimica Acta, 63, 1083–1095.
- Schwertmann U., Murad E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Minerals, 31(4), 277–284.
- Singer P.C., Stumm W. (1970) Acid Mine Drainage: The Rate-Determining Step. Science, 167, 1121–1123. http:// dx.doi.org/10.1126/science.167.3921.112.
- Slack J.F., Foose M.P., Flohr M.J.K., Scully M.V., Belkin H.E. (2003) Exhalative and subseafoor replacement processes in the formation of the Bald Mountain massive sulfde deposit, northern Maine. In: Goodfellow WD, van Staal CR, McCutcheon SR, Thomas MD (eds) Volcanogenic massive sulfde deposits of the Bathurst district, New Brunswick, and northern Maine. Economic Geology Monograph, 11, 513–547.
- Thorseth I.H., Furnes H., Tumyr O. (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chemical Geology, 119, 139–160. DOI: 10.1016/0009-2541(94)00098-S
- Torsvik T., Furnes H., Muehlenbachs K., Thorseth I., Tumyr H.O. (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth and Planetary Science Letters, 162, 165–176. DOI: 10.1016/ S0012-821X(98)00164-2
- Warren L.A., Ferris F.G. (1998) Continuum between sorption and precipitation of Fe(III) on microbial surfaces. Environmental Science & Technology, 32, 2331–2337.
- Westall F., de Wit M.J., Dann J., van der Gaast S., de Ronde C.E.J., Gerneke D. (2001) Early Archean fossil bacteria and bioflms in hydrothermally-infuenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research, 106, 93–116. DOI: 10.1016/S0301-9268(00)00127-3
- Yang B., Zeng Zh., Qi H., Wang X., Ma Y., Rong K. (2015) Constraints on Biotic and Abiotic Role in the Formation of Fe-Si Oxides from the PACMANUS Hydrothermal Field. Ocean Science journal, 50(4), 751-761. http://dx.doi. org/10.1007/s12601-015-0067-4.
- Zaykov V.V. (2006) Volcanism and sulfde mounds of the paleooceanic structures: by the example of Urals and Siberia massive sulfde bearing zones. Moscow, Nauka, 429 p. (in Russian)
- Zaykova E.V. (1991) Siliceous rocks of ophiolite associations (on the example of Mugodzhar). Moscow, Nauka, 134 p. (in Russian)
- Zierenberg R.A., Schiffman P. (1990) Microbial control of silver mineralization at a sea-foor hydrothermal site on the northern Gorda Ridge. Nature, 348, 155–157.
MINERALOGY 4 2024