Mineralogical-geochemical features of corundum miaskite-pegmatite from mine no. 210 (Ilmeny mountains, South Urals): preliminary results
M.A. Rassomakhin, E.S. Sorokina, A.V. Somsikova
Miaskite-pegmatite of mine no. 210 exhibits an unusual mineral composition for the Ilmeny Mountains. It contains a signifcant amount of sapphire-like corundum (uncommon of nepheline-bearing pegmatites) and various Th-bearing minerals («thoro-aeschinite», pyrochlore, phosphates). Pegmatite has a zonal structure, in which the central nepheline and lateral feldspar zones difer in composition of rock-forming and accessory minerals. Corundum is found in all zones of pegmatite. Accessory minerals of the central, eastern, and western zones include (i) Ti-niobates (columbite, pyrochlore, srilankite), zircon, spinel and thorianite, (ii) columbite, pyrochlore and zircon, and (iii) columbite, «ilmenorutile», toro-aeschinite, monazite-La and Ce, and zircon, respectively. The calculations based on two-feldspar thermometer for diferent pegmatite zones show a decrease in temperature from the periphery toward the center, which is in agreement with the variability of mineral assemblages. Pegmatite is strongly altered, which is expressed in the formation of cancrinite and sodalite, hydration of pyrochlore of the central zone, and signifcant compositional changes of Ti-niobates in the lateral zones of pegmatite. The Rb-Sr age of corundum miaskite-pegmatite is ~275 Ma, but the Rb-Sr system is signifcantly destroyed. The initial 87Sr/86Sr(275) isotopic ratio and ?Nd(275) value of the mineral indicate its crustal formation conditions. The geochemistry of corundum points to its multistage crystallization. The data points on Fe vs. Ga / Mg and FeO – Cr2O3 – MgO – V2O3 vs. FeO + TiO2 + Ga2O3 plots correspond to both «magmatic» and «metasomatic» corundum.
Figures 6. Tables 4. References 27.
Key words: corundum, sapphire, miaskite pegmatite, Ilmeny Mountains.
M.A. Rassomakhin, South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk oblast, 456317 Russia; Miha_Rassomahin@mail.ru
E.S. Sorokina, Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, ul. Kosygina 19, 119991 Moscow, Russia;
Institute of Geosciences, Johannes Gutenberg University Mainz,
J.-J.-Becher-Weg 21, Mainz, D-55128 Germany
A.V. Somsikova, Institute of Geosciences, Johannes Gutenberg University Mainz,
J.-J.-Becher-Weg 21, Mainz, D-55128 Germany
- Filina M.I., Sorokina E.S., Kononkova N.N., Botcharnikov R., Hofmeister W., Karampelas S., Rassomakhin M.A., Nikolaev A.G., Berndt J. (2019) Corundum anorthosites-kyshtymites from the south urals, russia: a combined mineralogical, geochemical, and u-pb zircon geochronological study. Minerals. 9(4), 234.
- Filina M.I., Sorokina E.S., Rassomakhin M.A., Kononkova N.N., Kostitsyn Yu.A., Somsikova A.V. (2019) Genetic linkage of corundum plagioclasites–kyshtymites and miaskites of the Ilmenogorsky–Vishnevogorsky complex, South Urals, Russia: new Rb–Sr and Sm–Nd isotopic, geochemical and mineralogical data. Geochemistry International, 57, 821–828.
- Giuliani G., Caumon G., Rakotosamizana-ny S., Ohnenstetter D., Rakototondrazafy M. (2014) Classifcation chimique des corindons par analyse factorielle discriminante: application a la typologie des gisements de rubis et saphirs. Chapter mineralogy, physical properties and geochemistry. Revue de Gemmologie, 188, 14–22.
- Graham I., Sutherland F.L., Zaw K., Nechaev V., Khanchuk A. (2008) Advances in our understanding of the gem corundum deposits of the West Pacifc continental margins intraplate basaltic felds. Ore Geology Reviews, 34(1–2), 200–215.
- Guo J., O’Reilly S.Y., Grifn W.L. (1996) Corundum from basaltic terrains: a mineral inclusion approach to the enigma. Contributions to Mineralogy and Petrology, 122, 368–386.
- Korinevskiy V.G., Blinov I.A. (2016) [First fnd of srilankite in the Urals]. Doklady Akademii nauk [Doklady Earth Sciences], 470, 957–960.
- Krasnobaev A.A., Davydov V. А. (2000) [Age and origin of the Ilmenogorsk sequence according to zirconology]. Doklady Akademii nauk [Doklady Earth Sciences], 372(1), 89–94. (in Russian)
- Krasnobaev A.A., Shchulэkin E.P., Davydov V.A., Cherednichenko N.V. (2001) [Zirconology of the Selyankino block in the Ilmeny Mountains]. Doklady Earth Sciences, 379(6), 807–811. (in Russian)
- Krasnobaev A.A., Valizer P.M., Rusin A.I., Busharina S.V., Medvedeva E.V., Rodionov N.V. (2011) [Zirconology of amphibolites of the Selyankinskaya Series of the Il’meny Mountains (Southern Urals)]. Doklady Akademii nauk [Doklady Earth Sciences], 441, 1683–1687.
- Krebs M.Y., Hardman M.F., Pearson D.G., Luo Y., Fagan A.J., Sarkar C. (2020). An evaluation of the potential for determination of the geographic origin of ruby and sapphire using an expanded trace element suite plus Sr– Pb isotope compositions. Minerals 10(5), 447.
- Lennykh V.I., Valizer P.M. (2006) [Geological scheme of the Ilmenogorsk complex]. Geologiya i mineralogiya Ilmenogorskogo kompleksa: situatsiya i problemy [Geology and mineralogy of the Ilmenogorsky complex: situation and problems]. Miass, IGZ UrO RAN, 20–27. (in Russian)
- Makarochkin B.A., Makarochkina M.S. (1955) [Unpublished report «Pegmatites of the Ilmeny Mountains»]. Volume 3. Miass, 127 p. (in Russian)
- Monchoux P., Fontan F., De Parseval P., Martin R.F., Wang R.C. (2006) Igneous albitite dikes in orogenic lherzolites, western Pyren?ees, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. Canadian Mineralogist, 44, 817–842.
- Nikandrov S.N., Rassomakhin M.A., Nishanbaev T.P. (2017) [List of minerals of the Ilmeny Mountains (data for 2017)]. Mineralogiya [Mineralogy], 3(1), 52–60. (in Russian)
- Peucat J.J., Rufault P., Fritch E., Bouhnik-Le-Coz M., Simonet C., Lasnier B. (2007) Ga/Mg ratio as a new geochemical tool to diferentiate magmatic from metamorphic blue sapphires. Lithos, 98, 261–274.
- Polyakov V.O., Bazhenov A.G., Petrov V.I.(1991) [Mineral assemblages of corundum of the Ilmeny Mountains]. Novye dannye po mineralogii endogennykh mestorozhdeniy i zon tekhnogeneza Urala [New data on mineralogy of endogenic deposits and technogenesis zones of the Urals]. Sverdlovsk, UrO RAN, 15–21. (in Russian)
- Puchkov V.N. (2000) [Paleogeodynamics of the South and Central Urals]. Ufa, IG UNTS RAN, 146 p. (in Russian)
- Putirka K.D. (2008) Thermometera and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61–120.
- Rassomakhin M.A., Kotlyarov V.A. (2018) [Mineralogy of inclusions in corundum from mine no. 418 (Ilmeny Reserve, the South Urals)]. Mineralogiya [Mineralogy], 4(3), 27–35. (in Russian)
- Sorokina E.S., Karampelas S., Nishanbaev T.P., Nikandrov S.N., Semiannikov B.S. (2017) Sapphire megacrysts in syenite pegmatites from the Ilmeny Mountains, South Urals, Russia: new mineralogical data. Canadian Mineralogist, 55, 823–843.
- Sorokina E.S., Kononkova N.N., Anosova M.O., Somsikova A.V., Kostitsyn Y.A., Rassomakhin M.A., Nikandrov S.N., Karampelas S., Nikolaev A.G., Kotlyarov V.A. (2019) Origin of blue sapphire in newly discovered spinel-chlorite-muscovite rocks within meta-ultramaftes of Ilmen mountains, South Urals of Russia: evidence from mineralogy, geochemistry, Rb-Sr and Sm-Nd isotopic data. Minerals, 9(1), 36.
- Sutherland F.L., Abduriyim A. (2009) Geographic typing of gem corundum: A test case from Australia. Journal of Gemmology, 31, 203–210.
- Sutherland F.L., Hoskin P.W.O., Fanning C.M., Coenraads R.R. (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contributions to Mineralogy and Petrology, 133, 356–372.
- Vanteev V.V., Kislov E.V., Aseeva A.V. (2019) [Geology and gemstone mineralization of the Naryn-Gol section (Dzhida River basin, Baikal rift system)] Metallogeniya drevnikh i sovremennykh okeanov-2019. Chetvert veka dostizheniy v izuchenii submarinnykh mestorozhdeniy [Metallogeny of ancient and modern oceans-2019. Twenty fve years of study of submarine deposits]. Miass, IMin UrO RAN, 249–252. (in Russian)
- Vysotskiy S.V., Nechaev V.P., Yakovenko V.V., Ignat’ev A.V., Velivetskaya T.A., Agoshkov A.I., Kis-sin A.Y., Sutherland F.L. (2015) Oxygen isotopic composition as an indicator of ruby and sapphire origin: a review of Russian occurrences. Ore Geology Reviews. 68, 164–170.
- Zwaan J.C., Buter E., Mertz-Kraus R., Kane R.E. (2015) The origin of Montana’s alluvial sapphires. Gems & Gemology, 51(4), 370–391.
МINERALOGY № 2 2020