РЕДКИЕ И МАЛОИЗУЧЕННЫЕ МИНЕРАЛЫ И АССОЦИАЦИИ

УДК 549.62 (470.55)

ДИНГДАОХЕНГИТ-(CE) С ОБУХОВСКОГО УВАЛА, ЮЖНЫЙ УРАЛ: ПЕРВАЯ НАХОДКА В РОССИИ

А.В. Касаткин¹, С.Г. Епанчинцев², Ф. Нестола³

¹ Минералогический музей им. А.Е. Ферсмана РАН, г. Москва, anatoly.kasatkin@gmail.com ² Институт минералогии УрО РАН, г. Миасс ³ Департамент наук о Земле, Университет Падуи, г. Падуя, Италия

DINGDAOHENGITE-(CE) FROM OBUKHOVSKIY UVAL, SOUTH URALS: FIRST FIND IN RUSSIA

A.V. Kasatkin¹, S.G. Epanchintsev², F. Nestola³

¹ Fersman Mineralogical Museum RAS, Moscow, anatoly.kasatkin@gmail.com ² Institute of Mineralogy UB RAS, Miass ³ Department of Geosciences, University of Padua, Padua, Italy

Дингдаохенгит-(Се), чрезвычайно редкий минерал из группы чевкинита, достоверно установлен в виде черных зерен до 2 мм в сиенит-пегматитах Обуховского увала, Южный Урал (первая находка в России). Эмпирическая формула, с предполагаемым распределением катионов по октаэдрическим позициям: $(Ce_{1.91}La_{1.10}Pr_{0.14}Nd_{0.13}Ca_{0.61}Th_{0.10})_{23.99}Fe^{2+}_{1.00}(Ti_{1.07}Mg_{0.53}Fe^{2+}_{0.22}Al_{0.18})_{52.00}(Ti_{1.75}Nb_{0.25})_{52.00}Si_4O_{22}$. Ввиду метамиктного состояния минерала его рентгеновские характеристики получены на прокаленном материале. Параметры моноклинной элементарной ячейки: a = 13.522(1) Å, b = 5.705(6) Å, c = 11.019(1) Å, $\beta = 100.72(1)^\circ$, V = 835.3(1) Å³.

Илл. 2. Табл. 2. Библ. 2.

Ключевые слова: дингдаохенгит-(Се), группа чевкинита, Обуховский увал, Южный Урал, первая находка в России.

Dingdaohengite-(Ce), an extremely rare mineral species of the chevkinite group, was found as black grains to 2 mm in syenitic pegmatites of Obukhovskiy Uval, South Urals (first find in Russia). Its empirical formula with suggested distribution of cations at octahedral sites: $(Ce_{1.91}La_{1.10}Pr_{0.14}Nd_{0.13}Ca_{0.61}Th_{0.10})_{\Sigma3.99}Fe^{2+}{}_{1.00}(Ti_{1.07}Mg_{0.53}Fe^{2+}{}_{0.22}Al_{0.18})_{\Sigma2.00}(Ti_{1.75}Nb_{0.25})_{\Sigma2.00}Si_4O_{22}$. Due to the metamict state of the mineral, its X-ray diffraction data were obtained on annealed material. The mineral is monoclinic: a = 13.522(1) Å, b = 5.705(6) Å, c = 11.019(1) Å, $\beta = 100.72(1)^\circ$, V = 835.3(1) Å³.

Figures 2. Tables 2. References 2.

Key words: dingdaohengite-(Ce), chevkinite group, Obukhovskiy Uval, South Urals, first find in Russia.

Группа чевкинита объединяет моноклинные оксосиликаты с диортогруппами Si_2O_7 , имеющие общую кристаллохимическую формулу $A_2B_2M_5(Si_2O_7)_2O_8$, где A и B – крупные катионы **REE**³⁺, **Sr** и Ca, имеющие координационные числа от 8 до 10, а M – октаэдрически координированные более мелкие катионы **Ti**, **Fe**²⁺, **Fe**³⁺, **Zr**, **Cr**³⁺, **Mg**, **Mn**²⁺, Nb и Al (жирным шрифтом выделены видообразующие компоненты) (Чуканов и др., 2011).

В этой группе выделяются два структурных типа – перрьерита и собственно чевкинита, отличия между которыми заключаются в количестве кристаллографически неэквивалентных октаэдрических позиций, что связано с разными способами упорядочения М-катионов, и в метрике элементарных ячеек, что отражается на порошковых рентгенограммах. В структуре перрьеритового типа имеются три независимых М-позиции, в двух из которых (M2 и M3) у всех известных к настоящему времени представителей доминирует Ті, а в позиции M1 – двухвалентные (Fe²⁺) или четырехвалентные (Ti, Zr) катионы. В структуре собственно чевкинитового типа неэквивалентных М-позиций уже четыре: позиции М2, М3 и М4 заселены в основном тоже Ті, хотя в некоторых случаях в них могут преобладать Fe²⁺, Fe³⁺ или Cr³⁺, тогда как в позиции М1 доминируют различные двух- или трехвалентные катионы (Fe²⁺, Mn²⁺, Mg, Fe³⁺). Элементарные ячейки минералов перрьеритового и чевкинитового типов отличаются величиной угла В: она составляет 113-114° у первых и 100-101° у вторых.

Дингдаохенгит-(Се) $Ce_{4}Fe^{2+}Ti_{2}Ti_{3}(Si_{2}O_{7})_{2}O_{0}$ относящийся к структурному типу собственно чевкинита, был впервые найден и описан на месторождении железа и редких земель Баян Обо, расположенном в автономном районе Внутренняя Монголия, Китай (Xu et al., 2008). Дингдаохенгит-(Ce) является диморфом перрьерита-(Се), а от остальных минералов структурного типа чевкинита отличается по химическому составу и способу упорядочения М-катионов: в позиции M1 у дингдаохенгита-(Се) доминирует Fe²⁺, а в M2 – Ti.

Нами достоверный дингдаохенгит-(Се) установлен в образцах, собранных осенью 2014 года одним из авторов (С. Епанчинцевым) на Обуховском увале, приблизительно в 0.5 км восточнее станции Бурлак железной дороги Кыштым – Карабаш, Карабашский горный округ, Челябинская область, Южный Урал. В геологическом отношении копи Обуховского увала находятся в южной части Увильдинской полосы щелочных пород, в середине Ильменогорско-Вишневогорского шелочного комплекса. В 1950-х годах на Обуховском увале В.Н. Авдониным с коллегами проводились исследовательские работы, в ходе которых было пройдено множество разведочных канав, вскрывших на большой площади сиенит-пегматитовые жилы. В одной из таких, ныне полностью заросших и заплывших канав и были найдены образцы с дингдаохенгитом-(Се).

Минерал находится в сиенитовом пегматите. Он образует в микроклине и альбите редкие изометричные зерна (рис. 1) до 2 мм черного цвета с сильным смоляным блеском, коричневой чертой и раковистым изломом. Уральский дингдаохенгит(Се) в зернах непрозрачен, а в очень тонких осколках просвечивает коричнево-черным цветом. В изученных зернах дингдаохенгит-(Се) часто оказывается переходным по составу к чевкиниту-(Се) и срастается с гидроксикальциопирохлором и уранпирохлором. Также в данной ассоциации установлены La-доминантный аналог чевкинита-(Се), минералы ряда эшинит-(Се) – ниобоэшинит-(Се), монацит-(Се), торит, рутил, геденбергит и поздний опал.

Исследование уральского дингдаохенгита-(Се) выполнено в лабораториях Минералогического музея им. А.Е. Ферсмана РАН (г. Москва) и Департамента наук о Земле Университета г. Падуя, Италия.

Найденный нами минерал оказался метамиктным и, как результат, полностью рентгеноаморфным, что в целом весьма типично для членов группы чевкинита, поэтому его рентгеновские характеристики были получены на прокаленном материале. Для восстановления кристаллической структуры минерала его зерна размером до 0.1 мм были подвергнуты нагреванию в течение трех часов при температуре 900 °C; следующие два часа они медленно остывали до температуры 500 °C, после чего были вынуты из печи и через 15 минут изучены методом монокристальной рентгеновской дифрактометрии. Рентгенодифракционные данные получены на монокристальном дифрактометре Agilent Supernova с детектором Pilatus 200K Dectris, на Мо Ка – излучении, при ускоряющем напряжении 50 кВ и токе 0.8 мА. Съемка проводилась по методу Гандольфи, расстояние образец-детектор 68 мм, время экспозиции 60 мин.

Рис. 1. Зерна черного дингдаохенгита-(Се) в полевом шпате.

Fig. 1. Black dingdaohengite-(Ce) in feldspar matrix.

Рефлексы полученной порошкограммы хорошо индицируются в моноклинной элементарной ячейке чевкинитового, но не перрьеритового типа. Рассчитанные по порошковым данным параметры ячейки: a = 13.522(1) Å, b = 5.705(6) Å, c = 11.019(1) Å, $\beta = 100.72(1)^\circ$, V = 835.3(1) Å³.

Также минерал исследован методами сканирующей электронной микроскопии (CamScan 4D с энергодисперсионным спектрометром Oxford Link ISIS) и волново-дисперсионного электронно-зондового анализа (Camebax SX-50). Количественные анализы выполнены при ускоряющем напряжении 20 кВ, силе тока электронного зонда 20 нА, времени накопления импульсов на пике 10 с, на фоне – 5 с; диаметр электронного зонда на поверхности образца – 2 мкм.

Данные по химическому составу дингдаохенгита-(Се) приведены в таблице 1. Распределение октаэдрически координированных катионов по М-позициям и отнесение данных составов к дингдаохенгиту-(Се) осуществлялось по аналогии со структурно изученным образцом из Баян Обо (Xu et al., 2008). При расчете эмпирических формул сначала заполнялись позиции M3 и М4 – титаном и ниобием или только титаном (ан. 5) и позиция М1-двухвалентным железом, а при Fe²⁺<1 а.ф. (ан. 1) еще и частью магния. Оставшиеся катионы – Ті, Fe²⁺, Al, Mg – помещались в смешанную позицию М2. Доминирование в последней титана над остальными катионами явилось основанием для отнесения конкретного химического состава к дингдаохенгиту-(Се). Все формулы рассчитаны на 4 атома Si и 22 атома O; все железо по балансу зарядов соответствует Fe²⁺.

Отметим, что химический состав зерен изучался как до, так и после их нагревания и восстановления кристаллической структуры минерала. Отожженные и изученные методом монокристальной рентгеновской дифрактометрии зерна существенно деформировались и приобрели пористость, хорошо видимую на РЭМ-фотографиях (рис. 2), однако химический состав их при этом практически не изменился, что говорит в пользу тождественности исходной и восстановленной структур уральского дингдаохенгита-(Се).

Как отмечалось выше, в найденных образцах с Обуховского увала дингдаохенгит-(Се) образует ряд твердых растворов с чевкинитом-(Се); в последнем больше железа, и расчет формул показывает, что оно доминирует над титаном и другими катионами в смешанно-заселенной позиции M2.

Рис. 2. Морфология зерна дингдаохенгита-(Се) после его нагревания и изучения методом монокристальной рентгеновской дифрактометрии (фото в отраженных электронах). Обозначения: dng – дингдаохенгит-(Се), mcr – микроклин, alb – альбит.

Fig. 2. BSE image of dingdaohengite-(Ce) grain after heating and single-crystal X-ray diffraction study. Abbreviations: dng-dingdaohengite-(Ce), mcr-microcline, alb-albite.

Статистика наших электронно-зондовых анализов показывает, что чевкинит-(Се) здесь гораздо более распространен: из двух десятков изученных зерен, дингдаохенгит-(Се) обнаружен только в трех, тогда как в остальных участки, отвечающие ему по составу, не отмечены.

Редкость дингдаохенгита-(Се) по сравнению с чевкинитом на Обуховском увале коррелирует с относительной распространенностью этих двух минеральных видов в целом.

Помимо первой находки в Китае, дингдаохенгит-(Се) был в 2013 году достоверно установлен одним из авторов настоящей статьи (А. Касаткиным) в образцах с горы Малоза, район Зомба, Малави. Нашу нынешнюю находку, таким образом, можно считать первой в России и третьей в мире.

Сравнительные характеристики дингдаохенгита-(Се) из трех разных мест его нахождения приведены в таблице 2.

Отметим некоторые отличия в химическом составе российского дингдаохенгита-(Се) от зарубежного материала. В последнем практически нет (Китай) или совсем нет (Малави) тория, который и «отвечает» за метамиктное состояние минерала. В силу этого, образцы из Китая и Малави – кристаллические, и их рентгеновские характеристики

Таблица 1

Химический состав дингдаохенгита-(Се) с Обуховского увала

Table 1

Chemical composition	of dingdaohengite-	(Ce) from (Obukhovskiv	Uval

№ анализа	1	2	3	4	5	6	7	средн.1-7
Компонент			1	Mac. %		1		
La ₂ O ₃	15.26	12.00	15.57	17.13	12.84	15.39	14.91	14.73
Ce ₂ O ₃	26.17	28.56	25.01	24.25	26.96	23.84	25.26	25.72
Pr ₂ O ₃	0.50	2.88	2.35	2.06	2.94	1.06	1.80	1.94
Nd ₂ O ₃	0.36	1.16	-	1.04	8.58	0.82	0.86	1.83
CaO	4.13	2.65	3.50	2.48	-	3.77	2.97	2.79
ThO ₂	2.38	1.61	1.68	1.89	-	3.44	3.77	2.11
FeO	5.22	7.81	6.07	7.67	10.18	6.08	7.13	7.17
MgO	1.95	1.25	2.46	1.34	0.50	2.78	2.00	1.75
Al ₂ O ₃	0.94	0.03	-	0.86	-	1.06	2.26	0.74
TiO ₂	21.95	19.99	21.15	19.75	18.41	14.32	13.60	18.45
Nb ₂ O ₅	1.12	1.46	1.49	1.27	-	7.15	6.72	2.74
SiO ₂	20.53	19.47	20.08	19.75	18.60	19.67	19.81	19.70
Сумма	100.51	98.87	99.36	99.49	99.01	99.38	101.09	99.67
		Кс	эффициент	ы формул, ра	асчет на Si ₄ C	D ₂₂		
La	1.10	0.91	1.14	1.28	1.02	1.15	1.11	1.10
Ce	1.87	2.15	1.82	1.80	2.12	1.77	1.87	1.91
Pr	0.04	0.22	0.17	0.15	0.23	0.08	0.13	0.14
Nd	0.03	0.09	-	0.08	0.66	0.06	0.06	0.13
Ca	0.86	0.58	0.75	0.54	-	0.82	0.64	0.61
Th	0.11	0.08	0.08	0.09	-	0.16	0.17	0.10
ΣΑ	4.01	4.03	3.96	3.94	4.03	4.04	3.98	3.99
Fe ²⁺	0.85	1.34	1.01	1.30	1.83	1.03	1.20	1.22
Mg	0.57	0.38	0.73	0.40	0.16	0.84	0.60	0.53
Al	0.22	0.01	-	0.21	-	0.25	0.54	0.18
Ti	3.21	3.09	3.17	3.01	2.98	2.19	2.06	2.82
Nb	0.10	0.14	0.13	0.12	-	0.66	0.61	0.25
ΣM	4.95	4.96	5.04	5.04	4.97	4.97	5.01	5.00
Si	4	4	4	4	4	4	4	4
0	22	22	22	22	22	22	22	22

Эмпирические формулы с учетом распределения октаэдрически координированных катионов по М-позициям

1
$$(Ce_{1.87}La_{1.10}Pr_{0.04}Nd_{0.03}Ca_{0.86}Th_{0.11})_{\Sigma 4.01}(Fe^{2+}_{0.85}Mg_{0.15})_{\Sigma 1.00}(Ti_{1.31}Mg_{0.42}Al_{0.22})_{\Sigma 1.95}(Ti_{1.90}Nb_{0.10})_{\Sigma 2.00}Si_4O_{22}$$

2
$$(Ce_{2.15}La_{0.91}Pr_{0.22}Nd_{0.09}Ca_{0.58}Th_{0.08})_{\Sigma 4.03}Fe^{2+}{}_{1.00}(Ti_{1.23}Mg_{0.38}Fe^{2+}{}_{0.34}Al_{0.01})_{\Sigma 1.96}(Ti_{1.86}Nb_{0.14})_{\Sigma 2.00}Si_4O_{22}$$

$$3 \qquad (Ce_{1.82}La_{1.14}Pr_{0.17}Ca_{0.75}Th_{0.08})_{\Sigma 3.96}Fe^{2+}{}_{1.00}(Ti_{1.30}Mg_{0.73}Fe^{2+}{}_{0.01})_{\Sigma 2.04}(Ti_{1.87}Nb_{0.13})_{\Sigma 2.00}Si_4O_{22}$$

4
$$(Ce_{1.80}La_{1.28}Pr_{0.15}Nd_{0.08}Ca_{0.54}Th_{0.09})_{\Sigma 3.94}Fe^{2+}_{1.00}(Ti_{1.13}Mg_{0.40}Fe^{2+}_{0.30}Al_{0.21})_{\Sigma 2.04}(Ti_{1.88}Nb_{0.12})_{\Sigma 2.00}Si_{4}O_{22}$$

 $(Ce_{2,12}La_{1,02}Nd_{0.66}Pr_{0.23})_{\Sigma 4,03}Fe^{2+}_{1,00}(Ti_{0.98}Fe^{2+}_{0.83}Mg_{0.16})_{\Sigma 1,97}Ti_{2,00}Si_{4}O_{22}$ 5

$$6 \qquad (Ce_{1.77}La_{1.15}Pr_{0.08}Nd_{0.06}Ca_{0.82}Th_{0.16})_{\Sigma 4.04}Fe^{2+}{}_{1.00}(Ti_{0.85}Mg_{0.84}Al_{0.25}Fe^{2+}{}_{0.03})_{\Sigma 1.97}(Ti_{1.34}Nb_{0.66})_{\Sigma 2.00}Si_4O_{22}$$

 $\begin{array}{c} 7 \\ (Ce_{1.87}La_{1.11}Pr_{0.13}Nd_{0.06}Ca_{0.64}Th_{0.17})_{\Sigma 3.98}Fe^{2+}{}_{1.00}(Ti_{0.67}Mg_{0.60}Al_{0.54}Fe^{2+}{}_{0.20})_{\Sigma 2.01}(Ti_{1.39}Nb_{0.61})_{\Sigma 2.00}Si_4O_{22}\\ cpedH.1-7 \\ (Ce_{1.91}La_{1.10}Pr_{0.14}Nd_{0.13}Ca_{0.61}Th_{0.10})_{\Sigma 3.99}Fe^{2+}{}_{1.00}(Ti_{1.07}Mg_{0.53}Fe^{2+}{}_{0.22}Al_{0.18})_{\Sigma 2.00}(Ti_{1.75}Nb_{0.25})_{\Sigma 2.00}Si_4O_{22}\\ \end{array}$

МИНЕРАЛОГИЯ № 3 2015

Таблица 2

Сравнительные данные для дингдаохенгита-(Се) из Баян Обо, Китай, г. Малоза, Малави и Обуховского увала, Южный Урал, Россия

Table 2

Comparative data for dingdaohengite-(Ce) from Bayan Obo, China, Mount Malosa, Malawi and Obukhovskiy Uval, S. Urals, Russia

Характерис- тика	Баян Обо, Китай	Малоза, Малави	Обуховский увал, Ю. Урал
Эмпирическая формула	$\begin{array}{c}(Ce_{2.13}La_{1.49}Ca_{0.48}Th_{0.01})_{\Sigma 4.11}\\(Ti_{2.84}Fe^{2+}{}_{1.47}Mg_{0.41}Fe^{3+}{}_{0.26}Nb_{0.04}\\Al_{0.01})_{\Sigma 5.03}(Si_2O_7)_2O_8\end{array}$	$\begin{array}{c} (Ce_{2.11}La_{1.01}Nd_{0.66}Pr_{0.22}Sm_{0.02})_{4.02} \\ (Ti_{2.81}Fe^{2+}Mg_{0.42}Fe^{3+}_{0.40})_{\Sigma 4.96} \\ (Si_2O_7)_2O_8 \end{array}$	$\begin{array}{c} (Ce_{1.91}La_{1.10}Pr_{0.14}Nd_{0.13}Ca_{0.61}\\ Th_{0.10}_{\Sigma 3.99}(Ti_{2.82}Fe^{2+}_{1.22}\\ Mg_{0.53}Al_{0.18}Nb_{0.25})_{\Sigma 5.00}(Si_2O_7)_2O_8 \end{array}$
$\begin{array}{c} a, \text{\AA} \\ b, \text{\AA} \\ c, \text{\AA} \\ \beta, \circ \\ V, \text{\AA}^3 \end{array}$	13.4656(15) 5.7356(6) 11.0977(12) 100.636(2) 842.39(46)	13.432(2) 5.7507(8) 11.073(1) 100.82(1) 840.2(3)	13.522(1) 5.705(6) 11.019(1) 100.72(1) 835.3(1)
Морфология и физические свойства	Короткопризматические и толстотаблитчатые кристаллы черного цвета до 1.5 см, просвечивающие, с полуметаллическим до металлического блеском, коричневой чертой и раковистым изломом	Пластинчатые кристаллы темно-коричневого цвета до 4 мм, непрозрачные, с полуметаллическим блеском, коричневой чертой и раковистым изломом	Зерна черного цвета до 2 мм, непрозрачные, с сильным смоляным блеском, коричневой чертой и раковистым изломом
Источник	Xu et al., 2008	Настоящая работа	Настоящая работа

были получены обычным путем, без нагревания материала. Уральский дингдаохенгит-(Се) является самым маложелезистым (7.2 мас. % FeO против 10.0 мас. % и 10.2 мас. % оксида общего железа, измеренного как FeO, соответственно для образцов из Китая и Малави). При этом, в отличие от образцов из Баян Обо и Малозы, всё железо в уральском дингдаохенгите-(Се) скорее всего находится в двухвалентном состоянии. В его составе фиксируются существенные примеси высоковалентных катионов Al³⁺, Th⁴⁺ и Nb⁵⁺, не оставляющие места для Fe³⁺.

Благодарности

Авторы выражают искреннюю признательность И.В. Пекову за замечания, высказанные при подготовке настоящей статьи.

Литература

Чуканов Н.В., Бласс Г., Пеков И.В., Белаковский Д.И., Ван К.В., Расцветаева Р.К., Аксенов С.М. Перрьерит-(La) (La,Ce,Ca)₄Fe²⁺(Ti,Fe)₄(Si₂O₇)₂O₈ – новый минеральный вид из вулканического района Айфель, Германия // Записки РМО. 2011. № 6. С. 34–44.

Xu J., Yang G., Li G., Wu Z., Shen G. Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China: Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup // American Mineralogist. 2008. V. 93. P. 740–744.

Поступила в редакцию 20 апреля 2015 г.