УДК 549.74 (470.55)

КАРБОНАТЫ ВИШНЁВОГОРСКОГО Zr-Nb-МЕСТОРОЖДЕНИЯ (ЮЖНЫЙ УРАЛ)

В.И. Попова¹, В.А. Попов¹, С.Н. Никандров², Е.И. Чурин¹, И.А. Блинов¹, П.В. Хворов¹

¹Институт минералогии УрО РАН, г. Миасс; popov@mineralogy.ru ²Ильменский государственный заповедник, г. Миасс

CARBONATES FROM THE VISHNEVOGORSKOE Zr-Nb DEPOSIT (SOUTHERN URALS)

V.I. Popova¹, V.A. Popov¹, S.N. Nikandrov², E.I. Churin¹, I.A. Blinov¹, P.V. Khvorov¹

¹Institute of Mineralogy UB RAS, Miass; popov@mineralogy.ru ²Ilmeny State Reserve, Miass

Обобщены данные о карбонатах в щелочных породах, пегматитах и поздних прожилках Вишнёвогорского месторождения. Среди выявленных минералов (21) преобладает кальцит. Менее распространены доломит, анкерит, сидерит, арагонит, бастнезит-(Се), стронцианит. Прочие минералы редки, в том числе и содержащие редкоземельные элементы – анкилит-(*Ce*), бурбанкит, синхизит-(*Ce*) и доннейит-(*Y*). Преобладающими пирохлоровыми рудами являлись карбонатиты и карбонатсодержащие пегматиты и жилки.

Илл. 10. Библ. 23.

Ключевые слова: карбонаты, Вишнёвогорское месторождение, Южный Урал.

Data on carbonates in alkaline rocks, pegmatites, and late veinlets of the Vishnevogorskoe deposit are summarized. Among 21 minerals studied, calcite is the major mineral; dolomite, ankerite, siderite, aragonite, bastnasite-(Ce), and strontianite are less abundant; and other minerals, including REE minerals (ancylite-(Ce), burbankite, synchysite-(Ce), and donnayite-(Y)), are rare. Carbonaties, carbonate-containing pegmatite, and finly veins are the main type of pyrochlore ores.

Figures 10. References 23.

Key words: carbonates, Vishnevogorskoe deposit, Southern Urals.

Введение

Вишнёвогорское месторождение циркон-ниобиевых руд находится в 102 км северо-западнее г. Челябинска, в 18 км к востоку от ст. Маук Южноуральской железной дороги. В Вишнёвых горах вначале добывали циркон (с 1926 г.) и полевой шпат (1932–1944 гг.) (Бонштедт-Куплетская, 1951). Отработка циркон-пирохлоровых руд Вишнёвогорского месторождения велась в период 1943–1993 гг. Вишнёвогорским рудником, затем Вишнёвогорским рудоуправлением (ВРУ) и горно-обогатительным комбинатом (ВГОК). С 1968 г. попутно с получением пирохлорового концентрата начато производство нефелин-полевошпатового концентрата для стекольной и керамической промышленности. В связи с ликвидацией подземной добычи ниобиевых руд с 1994 г. Вишневогорский ГОК выпускает нефелин-полевошпатовые концентраты. На 1995 г. в недрах месторождения ещё оставались запасы пирохлоровых руд в 28-ми пегматитовых жилах и 4-х рудных зонах. Оставшиеся разведанные запасы циркона в россыпях Вишнёвых гор составляют около 75 тыс. тонн (Левин и др., 1997).

Геология и минералогия щелочных пород и пегматитов Вишнёвых гор обобщена в ряде фундаментальных работ (Бонштедт-Куплетская, 1951; Еськова и др., 1964; Левин, 1974; Левин и др., 1997; Недосекова и др., 2009; и др.). Вишнёвогорский миаскитовый массив с телами карбонатитов и пегматитов субмеридионально вытянут на 25 км при ширине 4 км и локализован в метаморфических породах ильменогорской толщи рифея – гнейсах, сланцах, амфиболитах, кварцитах, которые в экзоконтактах массива фенитизированы в разной степени. Генезис массива объясняется моделью корового анатексиса с образованием фенитов под действием потока мантийных флюидов и внедрения карбонатит-миаскитовых интрузий (Левин и др., 1997; Недосекова и др., 2009).

Наиболее разведаны и частично отработаны СЗ участки Вишнёвых гор – зоны 125, 140, 147, 137 и свиты жил № 5 и 35 (рис. 1).

Карбонаты выявлены в составе разных пород (миаскитов, сиенитов, карбонатитов), в жильных телах пегматитов (миаскитовых, сиенитовых, карбонатитовых и гранитных), а также в поздних гидротермальных жилках разного состава.

Рис. 1. Геологическая схема северо-западной части Вишнёвых гор (по Б.М. Роненсону, 1966; с изменениями).

1 – гнейсы, амфиболиты и кристаллосланцы ильменогорской свиты (PR₁); 2 – жильные граниты (Pz₁?); 3 – пегматиты гранитные (Pz₂₋₃?); 4–5 – габброиды (4) и серпентиниты (5) Булдымского массива (PR₁?); 6 – апогранитные фениты – пироксеновые, амфибол-пироксеновые и биотит-пироксеновые (Pz₁); 7–9 – миаскиты биотитовые (7), мусковитизированные (8), альбитизированные (9) с зонами карбонатитов (Pz₁₋₂); 10 – пегматиты миаскитовые (Pz₂); 11 – основные нарушения; 12 – контуры карьеров.

Fig. 1. Geological scheme of the northwestern part of the Vishnevye Mountains, modified after B.M. Ronenson (1966).

1 – gneisses, amphibolites, and schists of the Ilmenogorsky Formation (PR_1); 2 – vein granites (Pz_1 ?); 3 – granite pegmatites ($Pz_{2,3}$?); 4–5 – gabbroic rocks (4) and serpentinites (5) of the Buldym massif (PR_1 ?); 6 – pyroxene, amphibole-pyroxene and biotite-pyroxene fenites (Pz_1); 7–9 – biotite (7), micaceous (8), and albitized (9) miaskites with carbonatite zones ($Pz_{1,2}$); 10 – miaskitic pegmatites (Pz_2); 11 – major faults; 12 – quarries.

Ниже нами приводятся примеры разнообразия выделений карбонатов в миаскитах и сиенитах, парагенезисов карбонатов и смены форм их кристаллов в друзовых полостях жил. Материалом для исследований послужили предоставленная А.В. Донсковым коллекция (из 334-х образцов карбонаты есть в 213-ти), а также наши сборы разных лет в бортах карьеров на г. Долгой и в Курочкином Логе, в отвалах жил № 5, 35, зон 125 и 147, а также в подземных горных выработках шахты «Капитальная» по зоне 140. Частично обобщены и данные о карбонатах в публикациях других исследователей Вишнёвогорского месторождения.

Методы исследования

Первичное описание образцов проведено с использованием бинокулярных микроскопов с целью характеристики взаимоотношений минералов в жилах и типа вмещающей породы. Карбонаты диагностированы по форме кристаллов и взаимодействию с соляной кислотой HCl, частично - по рентгенограммам (дифрактометр Shimadzu XRD-6000, аналитик П.В. Хворов) и химическому соста-By (JXA-733, SEM Vega3 TESCAN, M1 MISTRAL; аналитики, соответственно: Е.И. Чурин, И.А. Блинов, М.А. Рассомахин). Содержание кальцита в миаскитах, карбонатитах и переходных к ним породах (карбонатитоидах) г. Долгой определено нами площадным методом после травления HCl среза или скола образцов. Огранение кристаллов карбонатов определено как визуально (по сходству с известными формами), так и с применением фёдоровского столика СФ-4 в качестве гониометра.

Карбонаты щелочных пород

В наиболее характерных щелочных породах Вишнёвогорского массива – сиенитах нефелиновых (миаскитах) и безнефелиновых (биотит-полевошпатовых и др.), а также в карбонатитах и фенитах разного состава – выявлены значительные вариации содержаний карбонатов.

В миаскитах Вишнёвогорского массива из карбонатов характерным первичным минералом является кальцит (Бонштедт-Куплетская, 1951). Среднее содержание его в разных участках массива составляет (по шлифам) от долей процентов до 1–2 % и более: в северной части Центрального массива – 2.56 %, в средней части массива – 1.03 %, в южной – 0.90 % (Еськова и др., 1964).

В 2001 г. сотрудниками Института минералогии УрО РАН закартирован уступ ССЗ стенки карьера на горе Долгой, где проявлена сложная последовательность локализации разных пород в разнозернистых миаскитах, пересекаемых миаскитовыми пегматитами, карбонатитоидами (породами, по составу переходными от сиенитов к карбонатитам) и кальцит-флогопитовыми жилами (рис. 2); во всех этих породах встречались мелкие зёрна пирохлора.

Вариации содержаний разнозернистого кальцита в миаскитах составили 0.9–7.2 % площадей сечений исследованных образцов. Зёрна кальцита величиной не более 5 мм имеют преобладающую субизометричную форму, образуя срастания с другими минералами миаскитов. Микрозондовым анализом в кальцитах миаскитов определены примеси, мас. %: MgO 0.12–0.23; FeO 0.87–0.97; MnO 1.25– 1.40 (Попова и др., 2003); более поздние анализы кальцитов из крошки миаскитов скважин шарошечного бурения на г. Долгой близки этим данным.

Сиениты биотитовые и, реже, мусковит-биотитовые и пироксен-биотитовые, встречающиеся в эндоконтактах миаскитов и среди миаскитов, почти не содержат нефелина и первичного кальцита (менее 0.1 %) при содержаниях пирохлора и циркона 0.0n–0.n %, близких миаскитам (Еськова и др., 1964).

Карбонатиты кальцитовые (50-95 % кальцита) и карбонатитоиды (15-<50 % кальцита) выявлены в миаскитах, сиенитах и фенитах, где образуют протяжённые тела (зона 147) или жильные штокверки (зона 140). По преобладающему составу карбонатов в щелочных породах Вишнёвогорского массива проявлены кальциокарбонатиты, а в Булдымском массиве – магнезиокарбонатиты и феррокарбонатиты; рассмотрен типохимизм и эволюция состава карбонатов из этих карбонатитов (Недосекова, Мурзин, 2007). Наиболее проявлены пирохлорсодержащие биотит-кальцитовые карбонатиты, реже – кальцитовые с эгирин-авгитом; пирохлор в них имеет индукционные поверхности сокристаллизации с кальцитом и силикатами (рис. 3). Химическим анализом в составе кальцитов из карбонатитов зон 140 и 147 отмечены примеси, мас. %: МgO 0.3-0.4; FeO 0.87-0.97; MnO 1.2-2.8; SrO 0.7-1.4 (Левин и др., 1997). В кальците из пирохлор-биотитового карбонатита зоны 140 примеси нами не обнаружены, но есть вростки пирохлора. В кальците из нодулярного карбонатита зоны 147 (с округлыми пирохлор-ильменитовыми срастаниями) вариации содержаний примесей по микрозондовым данным

Рис. 2. Взаимоотношения щелочных пород в северной части карьера г. Долгой.

1 – миаскит среднезернистый; 2 – миаскит мелко-среднезернистый катаклазированный, с полосками обогащения биотитом, кальцитом, ильменитом и пирротином; 3 – пегматит миаскитовый; 4 – цеолитизированный миаскит; 5 – карбонатитоид мезократовый («горошковая брекчия») с округлыми обломками миаскитов и кристаллов микроклина, нефелина, канкринита, фторапатита; 6 – карбонатитоид меланократовый среднезернистый; 7 – кальцит-флогопитовые жилы («слюдиты»).

Fig. 2. Interrelationships of alkaline rocks in the northernern part of the Mt. Dolgaya quarry.

1 – medium-grained miaskites; 2 – small- to medium-grained cataclastic miaskites with biotite-, calcite-, ilmenite-, and pyrrhotite-rich bands; 3 – miaskitic pegmatites; 4 – zeolitized miaskites; 5 – mesocratic carbonate rocks with round fragments of miaskites and microcline, nepheline, cancrinite, and fluorapatite crystals; 6 – medium-grained melanocratic carbonate rocks; 7 – calcite-phlogopite veins (glimmerites).

Рис. 3. Виды кальцитовых карбонатитов: *a* – с биотитом и обломками миаскитов и их пегматитов (в миаскитах, г. Долгая); *б* – с пироксеном и фторапатитом (в фенитах, зона 125); *в* – с биотитом, пирохлором и фторапатитом (зона 140); *г* – с пироксеном и пирохлором (в фените, зона 125).

Fig. 3. Types of calcite carbonatites with: a – biotite and fragments of miaskites and their pegmatites (Mt. Dolgaya quarry); δ – pyroxene and fluorapatite (fenites, zone 125); a – biotite, pyrochlore, and fluorapatite (zone 125); a – pyroxene and pyrochlore (fenites, zone 125).

составили, мас. %: MgO 0.45–0.60; FeO 0.99–1.36; MnO 1.09–1.68; не обнаружены SrO и редкие земли (Попов, Нишанбаев, 2008).

Кальцит-доломитовые и доломитовые карбонатиты проявлены в породах Булдымского массива серпентинитов (Свяжин, 1966; Левин и др., 1997; Недосекова и др., 2009). По данным химических анализов, вариации содержаний примесей в кальцитах кальцит-доломитовых карбонатитов составляют, мас. %: MgO 1.4-2.5; FeO 0.7-0.9; MnO 1.4-2.2; SrO 0.7-1.7 (Левин и др., 1997). По ИК-спектрам и термограммам ранее в кальцитах карбонатитов указывалось до 10-20 % сидеритовой молекулы (что отвечает 6-12 мас. % FeO), а в доломитах до 10 % анкеритовой составляющей (Недосекова, 1993). В зёрнах более магнезиального кальцита (с 4-5 мас. % MgO) указывались регулярные (т.е. синтаксические. – П.В.) вростки доломита, а также собственно жилы магнезита с 40 % MgO (Левин и др., 1997). Следует отметить, что при анализе карбонатов стандартным химическим методом «мокрой химии» в материале проб возможны примеси (например, редких и редкоземельных элементов) из других минералов породы и прожилков.

Карбонаты пегматитов

Пегматиты Вишнёвогорского месторождения подразделяются по преобладающему составу на пегматиты сиенитовые (нефелин-полевошпатовые и полевошпатовые), карбонатитовые и гранитные, – соответственно главным типам магматических пород.

Отмечалось, что пегматиты широко распространены (Амеландов, 1929; и др.), но специально вскрывались только наиболее крупные жилы щелочных пегматитов – система жил № 5 на горе Каравай, рудника «Шпат» в Курочкином Логе, жила Цирконового шурфа на горе Ерёминой и жила 35 на северном склоне горы Долгой (Бонштедт-Куплетская, 1951). В процессе добычи ниобиевых руд карьерами и шахтой в северо-западной части Вишнёвогорского миаскитового массива отрабатывались и пегматиты, но данных о них почти нет, как и о пегматитах, вскрываемых в последние годы карьерами на горах Долгой и Кобелихе. Практически во всех обследованных пегматитовых жилах и миаролах отмечалось то или иное количество первичных карбонатов, преимущественно – кальцита, в виде включений в полевых шпатах, нефелине, биотите, ильмените и других минералах пегматитов, что частично отражено в обобщающих монографиях (Бонштедт-Куплетская, 1951; Еськова и др., 1964), статьях разных исследователей и отмечалось нами при обследовании горных выработок и изучении образцов пород и минералов.

Кальцит среди первичных агрегатов минералов в нефелин-полевошпатовых пегматитах образует агрегаты субизометричных зёрен разной величины белого или желтоватого цвета; по форме зёрен можно предполагать, что кристаллы его (при наличии полостей) также были бы субизометричного облика. В пегматитах Курочкина лога химическим анализом в кальците из примесей определены, мас. %: %: MgO 0.50; FeO 0.49; MnO 0.50 (Бонштедт-Куплетская, 1951).

В зоне № 140, находящейся в Западном пластовом теле миаскитов (в «седловидной залежи»), редкометалльная минерализация представлена множеством субсогласных с полосчатостью субпараллельных прожилков зонального строения с последовательной кристаллизацией сначала биотит-полевошпатового агрегата, постепенно переходящего в пирохлор-биотит-полевошпатовый с кальцитом, и завершается кристаллизацией преимущественно кальцита с вростками пирохлора (рис. 4).

В отвалах зоны 125 среди пироксен-полевошпатовых фенитов встречены и карбонатит-пегматиты с эгирин-авгитом и пирохлором (рис. 5*a*); в химическом анализе кальцита определены повышенные количества примесного железа и марганца, мас. %: Fe₂O₃ 1.11; MnO 1.36; MgO 0.18; TR 0.28 (Еськова и др., 1964). Кальцит из миарол нозеансодержащего карбонатит-пегматита (рис. 5*б*) из керна скважины № 3010 с глубины 110 м в C3 экзоконтакте миаскитового массива беден примесями (микрозонд, мас. %): MgO 0.28; FeO 0.17; MnO 0.23 (наши данные). Зёрна кальцита имеют поверхности совместного роста с флогопитом, нозеаном и пирротином (Попов, Нишанбаев, 2010).

Карбонаты поздних (послерудных) прожилков

В разных породах и пегматитовых жилах Вишнёвых гор более поздние выделения кальцита связаны с трещинными секущими структурами, возникшими после щелочных пегматитов и карбонатитов (Чесноков, 1956; Никандров, 1983; и др.). Там, где поздняя минерализация в полостях трещин наложена на более раннюю (с образованием жил «альпийского типа», по Б.В. Чеснокову, 1963), иногда сложно отнести карбонаты из разобщённых

Рис. 4. Вростки пирохлора в зональных биотит-полевошпат-кальцитовых жилках зоны 140:

а – в сечении жилки; *б* – в её плоскости (кальцит подтравлен).

Fig. 4. Inclusions of pyrochlore in biotite-feldsparcalcite veins (zone 140):

a – cross-section of the vein; δ – plan view (*calcite is slightly etched*).

прожилков к определённой генерации (последовательности минералообразования). В образцах жильных агрегатов нередко наблюдались щёточки кварца и «мономинеральные» хлоритовые зоны («рубашки»), отграничивающие последующую минерализацию с несколькими генерациями жильного кальцита и других карбонатов.

Жилы «альпийского типа» Б.В. Чесноковым (1963) разделены на два главных подтипа: 1 – в пироксеновых сиенитах, 2 - в миаскитах. По конкретным наблюдениям строения прожилков в жильных зонах им показаны модели последовательности кристаллизации минералов в этих жилах. Приведём один из обобщающих примеров (рис. 6), где на стенку трещины в породе наросли кварц, спайные ромбоэдры анкерита, затем тупоромбоэдрический кальцит-1, перекрытые корочкой железистого хлорита. После хлорита наросли более крупный тупоромбоэдрический кальцит-2, пирит и арагонит. На тупоромбоэдрических кристаллах кальцита иногда отмечались ещё очень маленькие грани призмы или острейшего ромбоздра. Всего в жилах «альпийского типа» Вишнёвогорского месторождения Б.В. Чесноковым указывалось до 20 минералов. Из карбонатов им отмечены только кальцит СаСО,, анкерит Ca(Fe,Mg,Mn)(CO₃), арагонит CaCO₃ и, предположительно, сидерит FeCO₃; данных по составу их в этой статье не приведено.

Кроме преобладающего кальцита, среди карбонатов в жилках из шахтных выработок зоны № 140 после кальцита изредка встречался и сидерит в форме спайных ромбоэдров в сростках с гейландитом и пиритом, а после сидерита снова отло-

Рис. 5. Агрегаты кальцита в карбонатит-пегматитах:

а – в сростке с эгирин-авгитом и пирохлором (зона 125); *б* – с голубоватым нозеаном, флогопитом и пирротином (из керна скважины 3010).

Fig. 5. Calcite aggregates in carbonatite-pegmatites:

a – intergrown with aegirine-augite and pyrochlore (zone 125); δ – with bluish nosean, phlogopite, and pyrrhotite (from a core sample).

жился кальцит (Попов, Нишанбаев, 1993). Сидерит отмечен также в виде мелких кристалликов в полостях с поздней редкометалльной минерализацией вместе с редкими анкилитом, доннейитом, бурбанкитом и другими минералами (Никандров, 1988).

При изучении образцов из коллекции А.В. Донскова нередко в одном образце жильного агрегата выявляются разнообразие габитусов кристаллов кальцита, смена форм его роста, наросты кристалликов пирита, а также полигенерационное образование кальцита (рис. 7, 8) и некоторых ассоциирующих с ним минералов (наиболее часто – хлорита, кварца, натролита, арагонита, стронцианита и стильбита). Встречались образцы из друзовых полостей с кальцитом, практически не содержащим примесей Sr и REE, но цементирующим обломочки зёрен более ранних минералов – полевых шпатов, ильменита, алланита-(*Ce*), пирохлора.

Кроме приведённых примеров, встречались и другие последовательности образования разных по форме кальцитов в одном и том же образце. Так, в одном из образцов на крупных (до 4 см) скаленоэдрах кальцита, частично перекрытых тонкой зеленовато-серой корочкой хлорита, наросли мелкие ромбоэдры кальцита до 1 мм (с мелким пиритом и титанитом), тоже с корочкой хлорита, после чего отложились поздние тупоромбоэдрические кристаллы кальцита (до 1-5 мм). С тонкотаблитчатым кальцитом (папиршпатом) иногда встречаются сростки столбчатых кристалликов то натролита, то стронцианита (с редким пирротином). В жилке, секущей полосчатость амфибол-полевошпатового фенита с редким пироксеном и кальцитом, на друзовом агрегате магнезиогастингсита с адуляром отложились сначала белые седловидные спайные ромбоэдры доломита, затем - тупоромбоэдрические кристаллы кальцита в ассоциации с табличка*Рис.* 6. Схема последовательной кристаллизации поздних минералов жилки в эгирин-полевошпатовом сиените зоны 140 (по Б.В Чеснокову, 1963).

1 – сиенит; 2 – кварц; 3 – анкерит; 4 – полость растворения внутри анкерита; 5 – кальцит-1; 6 – хлорит; 7 – кальцит-2; 8 – пирит; 9 – арагонит.

Fig. 6. Scheme of consecutive crystallization of late minerals in aegirine-feldspar syenite from zone 140 *(after* B.V. Chesnokov, 1963).

1 – syenite; 2 – quartz; 3 – ankerite; 4 – dissolution cavity in ankerite; 5 – calcite; 6 – chlorite; 7 – calcite-2; 8 – pyrite; 9 – aragonite.

ми зонально-секториального брукита и агрегатом столбчатых кристаллов стронцианита.

В образцах поздних прожилков из шахтных выработок рудной зоны 140 выделено не менее шести генераций кальцита (Никандров, 1983) и приведена обобщённая последовательность кристаллизации минералов (рис. 9). На схеме отражено неоднократное образование кварца, хлорита, флюорита, пирита и кальцита. Анкерит в жилках отлагался раньше кальцита, и есть повторение одинаковых форм кальцита в разных его генерациях (что отмечал и Б.В. Чесноков).

В кадастр минералов Вишневых и Потаниных гор по состоянию на 1996 год (Кобяшев и др., 1998) включены 23 карбоната, из них 19 – из Вишнёвых гор. Помимо уже кратко охарактеризованных преобладающих кальцита и менее проявленных анкерита, доломита, сидерита и арагонита, в списке приведены ещё 14 минералов, встречающихся преимущественно эпизодически. Указания на их находки приведены ниже в алфавитном порядке.

Азурит $Cu^{2+}_{3}(CO_{3})_{2}(OH)_{2}$ упомянут Е.М. Еськовой с соавторами (1964); наличие его в зоне гипергенеза вполне вероятно, так как в рудах встречаются сульфиды меди (борнит, ковеллин, кубанит, халькопирит).

Анкилит-(*Ce*) SrCe(CO₃)₂(OH)×H₂O под названием «анкилит» описан в прожилках, секущих миаскиты зоны 140 (Никандров, 1988). Образует мелкие псевдооктаэдрические светло-жёлтые кристаллики в ассоциации с редкими бурбанкитом и доннейитом. По составу центральная зона анкилита-(Ce) содержит повышенные содержания редких земель и кальция, а периферическая зона – стронция (Пеков и др., 1996).

Бастнезит-(*Ce*) (Ce,La)(CO₃)F в таблитчатых зёрнах от светло-жёлтого до желтовато-коричне-

Рис. 7. Габитус кристаллов кальцита в полостях прожилков в сиенитах пироксеновых (*a*, *b*, *c*) и биотитовых (*b*, *e*). *a* – пинакоидально-призматический, с бугорками роста тупого ромбоэдра {01 T2} на пинакоиде; *b* – субизометричный, комбинация призмы {10 T0} и ромбоэдра {01 T2}; *b* – скаленоэдрический {21 31}, после кварца с кристалликами пирита; *c* – спайноромбоэдрический {10 T1}; *d* – тупоромбоэдрический {01 T2} (с микрозёрнами пирита), наросший на ранние скаленоэдры с корочкой хлорита; *e* – тонкотаблитчатый, с «присыпкой» кубооктаэдров пирита. *Fig.* 7. Habit of calcite crystals in cavities of different veins from pyroxene (*a*, *b*, *c*) and biotite (*b*, *e*) syenites.

a – pinacoidal-prismatic, with obtuse rhombohedron {01 12} on pinacoid; δ – subisometric, combination of prism {10 10} and rhombohedron {012}; e – scalenohedral {2131}, after quartz with pyrite crystals; e – rhombohedral {10 11}; ∂ – obtuse rhombohedral {01 12} (with pyrite micrograins) on early scalenohedrals with chlorite rim; e – fine tabular, with pyrite cuboctahedral crystals.

Рис. 8. Примеры форм роста кристаллов кальцита из прожилков в хлоритизированном фените (a, δ) , миаските (b) и амфибол-полевошпатовом сиените (c):

а – тупые ромбоэдры {01 $\overline{1}2$ } → скаленоэдры {21 $\overline{3}1$ } кальцита, с кварцем → поздние ромбоэдры {01 $\overline{1}2$ } на головках и боковых гранях скаленоэдров; *б* – комбинация {01 $\overline{1}2$ }+{10 $\overline{1}0$ }, с «гирляндами» кубооктаэдров пирита только на гранях призмы; *в* – в кварце вростки «седловидных» ромбоэдров кальцита {10 $\overline{1}1$ } с пиритом {100} на верхних гранях и, позднее, с ориенитрованно наросшими скаленоэдрами {21 $\overline{3}1$ } белого кальцита; *г* – двойник прорастания кальцита по (0001) со сменой зон: {10 $\overline{1}1$ }→{21 $\overline{3}1$ }→ {21 $\overline{3}1$ }+{0001}, с частью корочки пирита {100}.

Fig. 8. Examples of growth forms of calcite crystals from veins in chloritized fenite (a, δ) , miaskite (ϵ) , and amphibole-feldspar syenite (ϵ) :

a – obtuse rhombohedra $\{01\overline{1}2\} \rightarrow$ scalenohedra $\{21\overline{3}1\}$ of calcite with quartz \rightarrow late rhombohedra $\{01\overline{1}2\}$ on scalenohedra; \overline{o} – combination of $\{01\overline{1}2\}$ and $\{10\overline{1}0\}$ with pyrite cuboctahedral crystals only on prism surface; e – saddle-like rhombohedra $\{10\overline{1}1\}$ with pyrite $\{100\}$ and late calcite scalenohedra $\{21\overline{3}1\}$; e – calcite twin by (0001) with changing zones $\{10\overline{1}1\} \rightarrow \{21\overline{3}1\} \rightarrow \{21\overline{3}1\} + \{0001\}$, and pyrite rim.

Puc. 9. Схема последовательности минералообразования в поздних прожилках зоны 140 (Никандров, 1983). *Fig. 9.* Scheme of consecutive crystallization of minerals in late veins from zone 140.

вого цвета впервые найден в 1955 году Е.Б. Халезовой в кварцевых прожилках горы Долгой под названием «бастнезит» среди пироксеновых фенитов жилы № 35. Встречен он также в щелочных пегматитах и кальцитовых прожилках; сумма редких земель в нём составила 74.65-75.84 мас. % (Еськова и др., 1964). В образцах из коллекции А.В. Донскова бледно-жёлтые зёрна бастнезита-(Се) до 1 мм встречены нами в виде включений по зоне роста октаэдра флюорита, отложившегося в полости фторапатит-эгирин-полевошпатовой жилы. Коричневые гексагональные таблички бастнезита-(Се) из кварц-арфведсонитового прожилка в фените из шахты № 5 имеют состав (микрозонд, мас. %): La₂O₂ 28.03; Ce₂O₂ 36.79; Pr₂O₂ 2.37; Nd₂O₂ 5.84; Sm₂O₃ 0.12; CO₂ 32.72_{расч.}; F 9.13 и малые примеси Na, Ca, Sr, Y (Пеков и др., 1996); в нём встречаются тонкие вростки синхизита-(Се). Бастнезит с преобладанием La в Вишнёвогорском месторождении не встречен (известен южнее, в Мочалином Логе).

Бурбанкит (Na,Ca)₃(Sr,Ba,Ce)₃(CO₃)₅ («бербанкит») – пучки светло-жёлтых тонкоигольчатых индивидов длиной до 2 мм, наросшие на микроклин и альбит, – выявлен в составе поздней редкометалльной минерализации с анкилитом и доннейитом (Никандров, 1988). По данным 2-х микрозондовых анализов (Пеков и др., 1996), средний состав «бербанкита» следующий (мас. %): Na₂O 10.13; CaO 7.86; SrO 33.77; BaO 4.46; Y₂O₃ 0.51; La₂O₃ 3.08; Ce₂O₃ 4.48; Pr₂O₃ 0.19; Nd₂O₃ 0.82; Sm₂O₃ 0.09; CO₂ 32.72_{расч}.

Доннейит-(*Y*) Sr₃NaCaY(CO₃)₆×3H₂O («доннейит») в виде светло-жёлтых бочёнковидных кристалликов до 2 мм с грубой штриховкой на боковых гранях (Никандров, 1987, 1988) нарастал на друзы кристаллов микроклина и альбита. Микрозондовым анализом (Пеков и др., 1996) в доннейите-(Y) определены, мас. %: Na₂O 3.75.13; CaO 5.72; SrO 28.71; BaO 3.51; Y₂O₃ 10.00; La₂O₃ 0.93; Ce₂O₃ 1.10; Nd₂O₃ 0.10; CO₂ 27.69_{расч.}; H₂O 9.5_{расч.}.

Малахит $Cu_{2}^{2+}(CO_{3})(OH)_{2}$, как и азурит, приведён в списке минералов Вишневых гор без описания (Еськова и др., 1964).

Нахколит NaHCO₃, ниеререит Na₂Ca(CO₃)₂ и пирссонит Na₂Ca(CO₃)₂ \times 2H₂O установлены в составе первичных газово-твёрдофазовых включений в кальците (Таланцев и др., 1987).

Синхизит-(*Ce*) Ca(Ce,La)(CO₃)₂F в эпитаксическом срастании с бастнезитом-(*Ce*) из шахты \mathbb{N}_{2} 5 (см. выше) содержит (микрозонд, мас. %): Na₂O 0.16; CaO 16.59; SrO 0.34; Y₂O₃ 1.51; La₂O₃ 15.16; Ce₂O₃ 24.51.10; Pr₂O₃ 1.97; Nd₂O₃ 7.03; Sm₂O₃ 0.90; CO₂ 27.31_{расч.}; F₂ 5.78 (Пеков и др., 1996).

Стронцианит SrCO₃ как «кальциостронцианит» найден в 1957 г. А.Г. Жабиным в фенитах экзоконтакта щелочного массива (Еськова и др., 1964). Пучковидные агрегаты столбчатых кристаллов стронцианита встречены нами в нескольких образцах коллекции А.В. Донскова – в сростках с папиршпатом, наросты на кристаллах желтоватого короткопризматического кальцита и в ассоциации с поздними мелкими кристалликами фторапатита, отложившимися на ромбоэдрах доломита. Ранее отмечен также в виде мелких кристалликов и радиальных «звёздчатых» сростков в полостях с поздней редкометалльной минерализацией вместе с редкими анкилитом, доннейитом, бурбанкитом и другими минералами (Никандров, 1988).

Трона $Na_3(CO_3)(HCO_3) \times 2H_2O$ – мелкие вытянутые и уплощённые зёрна в порошковатом тенардите – выявлена в иммерсионных препаратах (Чесноков и др., 1984).

Шортит $Na_2Ca_2(CO_3)_3$ в виде таблитчатых и толстотаблитчатых кристаллов до 4 см встречен Б.В. Чесноковым в составе друзовых агрегатов вместе с анальцимом и натролитом, наросших на стенки полостей секущих трещин в миаските; центральная часть этих полостей заполнена мирабилитом и тенардитом. Химическим анализом определён состав крупного монокристалла шортита, мас. %: Na_2O 20.05; CaO 36.85; MgO 0.16; CO_2 42.28; H_2O 0.67 (Чесноков и др., 1984).

Церуссит РbCO₃ как продукт гипергенного разрушения галенита отмечен Б.В. Чесноковым (1960).

При изучении нодулярных карбонатитов из зоны 147 Вишнёвых гор в зерне натролита обнаружены включения давсонита NaAl(CO₃)(OH)₂ (Попов, Нишанбаев, 2008). В последнее время давсонит обнаружен и в канкринит-содалитовых пегматитах горы Кобелихи (устное сообщение М.А. Рассомахина).

Заключение

На примере вышеуказанных карбонатов, входящих в состав разных горных пород и жильных тел Вишнёвогорского месторождения, ярко прослеживается сложность растянутых во времени процессов формирования миаскитов, безнефелиновых сиенитов и карбонатитов и соответствующих этим породам пегматитовых жил, сопровождаемых проявлениями метасоматоза и послерудного жильного

Рис. 10. Габитусы кристаллов биотита и кальцита, коррелирующие с относительной щелочностью минералообразующей среды (Попов, 1984).

Fig. 10. Habits of biotite and calcite crystals correlated with relative alkalinity of the mineral-forming medium.

заполнения. Наиболее распространённым является кальцит. В постмагматических образованиях кальцит характеризуется разнообразием минеральных парагенезисов, огранением и габитусом, с малыми примесями Fe, Mn и Mg. Энергодисперсионным анализом в кальцитах практически не выявлено значимых примесей Sr и REE, а только микровключения минералов, содержащих эти элементы.

Другие карбонаты имеют меньшее развитие по сравнению с кальцитом, но тоже полигенерационны, судя по описаниям исследователей. Широкое участие углекислоты в процессах минералообразования Вишнёвогорского комплекса могло привести к локальным концентрированным проявлениям карбонатной редкоземельной минерализации. Редкоземельные карбонаты – бастнезит, синхизит, бурбанкит, анкилит-(Се) – встречаются сравнительно редко в трещинных структурах апикальной части щелочной интрузии. В метасоматитах редкоземельные карбонаты пока не отмечались, но по принципу жил «альпийского типа» их можно там ожидать.

Ранее в разных месторождениях Урала были выявлены морфологические ряды габитусных форм роста кристаллов разных минералов в соответствии с габитусом кристаллов кварца в средах разной щёлочности (Попов, 1984); фрагмент ряда для кальцита и биотита дан на рисунке 10. Можно полагать, что в примерах, приведённых Б.В. Чесноковым (1963), тупоромбоэдрические кристаллы кальцита (см. рис. 6) отлагались в щелочной среде. Разная форма последовательных кристаллов кальцита из поздних прожилков зоны 140 Вишнёвых гор (см. рис. 9) отражает изменение минералообразующих сред (в разных прожилках) от ранних щелочных к менее щелочным и близнейтральным с переходом снова к щелочным растворам. Миаскиты и карбонатиты Вишнёвогорского массива рассматриваются как продукты кристаллизации флюидонасыщенных щелочных магм, порождённых мантийным анатексисом и последующими мантийно-коровыми процессами (Недосекова и др., 2009). Вишнёвогорское редкометалльное месторождение отнесено к альбититовому типу (Овчинников, 1998). Метасоматиты с количественным преобладанием альбита действительно развиты в некоторых частях структуры, но большая часть отработанных руд не относится к метасоматическим альбититам. Карбонатиты и карбонатсодержащие сиенитовые пегматиты, а также многочисленные жилки (в том числе и с альбитом) являлись преобладающими пирохлоровыми рудами.

Авторы благодарны Александру Викторовичу Донскову за возможность изучения его коллекции, а также М.А. Рассомахину за рентгенофлюоресцентный анализ некоторых минералов.

Работа проведена по госбюджетной теме ГР № 01201374594 ИМин УрО РАН.

Литература

Бонштедт-Куплетская Э.М. Минералогия щелочных пегматитов Вишнёвых гор. М.: АН СССР, 1951. 193 с.

Еськова Е.М., Жабин А.Г., Мухитдинов Г.Н. Минералогия и геохимия редких элементов Вишнёвых гор. М.: Наука, 1964. 319 с.

Кобяшев Ю.С., Макагонов Е.П., Никандров С.Н. Минералы Вишнёвых и Потаниних гор. Миасс: ИГЗ УрО РАН, 1998. 77 с.

Левин В.Я. Щелочная провинция Ильменских– Вишнёвых гор (формации нефелиновых сиенитов Урала). М.: Наука, 1974. 223 с. Левин В.Я., Роненсон Б.М., Самков В.С., Левина И.А., Сергеев Н.С., Киселёв А.П. Щёлочно-карбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 1997. 272 с.

Недосекова И.Л. Щёлочно-карбонатные метасоматиты Булдымского гипербазитового массива // Урал. минерал. сборник. Екатеринбург: УИФ Наука. 1993. № 1. С. 46–49.

Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. Ильмено-Вишнёвогорский миаскит-карбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия) // Геология рудн. месторожд. 2009. Т. 51. № 2. С. 157–181.

Недосекова И.Л., Мурзин В.В. Типохимизм и эволюция состава карбонатов из карбонатитов Ильмено-Вишнёвогорского щелочного комплекса (Южный Урал) / Минералогия Урала–2007. Матер. V Всеросс. совещ. Миасс-Екатеринбург, 2007. С. 49–54.

Никандров С.Н. Минерализация пострудных тектонических нарушений Вишнёвогорского месторождения // Минералы и парагенезисы минералов месторождений Урала. Свердловск: УНЦ АН СССР, 1983. С. 32–45.

Никандров С.Н. Поздняя акцессорная редкометалльная минерализация в Вишнёвогорском комплексе // Новые данные по минералогии Урала. Свердловск: УрО АН СССР. 1988. С. 60–71.

Овчинников Л. Н. Полезные ископаемые и металлогения Урала. М.: Геоинформмарк, 1998. 413 с.

Пеков И.В., Куликова И.М., Никандров С.Н. О составе редкоземельных карбонатов из гидротермалитов Вишнёвогорского щелочного комплекса // Урал. летняя минералог. школа–96. Екатеринбург: УГГА. 1996. С. 137–141.

Попов В.А., Нишанбаев Т.П. Находка нозеана в карбонатитах Вишнёвых гор (Урал) // Зап. РМО. 2010. № 6. С. 140–145.

Попов В.А., Нишанбаев Т.П. Нодулярные карбонатиты Вишнёвых гор // Девятые Всеросс. научн. чтения памяти ильменского минералога В.О. Полякова. Миасс: ИМин УрО РАН. 2008. С. 19–23. Попов В.А., Нишанбаев Т.П. Целестин, апофиллит, гейландит и гизингерит из Вишнёвых гор // Уральский минералогический сборник. Екатеринбург: УИФ Наука. 1993. № 1. С. 56–59.

Попова В.И., Баженов А.Г., Попов В.А., Ахлюстин В.Е., Муфтахов В.А. Влияние неоднородности состава щелочных пород Вишнёвогорского месторождения на качество нефелин-полевошпатового сырья (Южный Урал) // Урал. геолог. журн. 2003. № 6. С. 103–126.

Роненсон Б.М. Происхождение миаскитов и связь с ними редкометалльного оруденения. М.: Недра, 1966. 173 с.

Свяжин Н.В. Доломитовые карбонатиты Вишнёвогорского комплекса ультраосновных и щелочных пород // Изв. АН СССР. Сер геол. 1966. № 5. С. 65–72.

Таланцев А.С., Таланцева Г.А. Газово-твёрдофазовые первичные включения в кальцитах из карбонатитов уральского щелочного комплекса // Ежегодник-1986 ИГГ УНЦ АН СССР. Свердловск, 1987. С. 125–128.

Чесноков Б.В. Жилы альпийского типа в щелочных породах Вишнёвых гор // Геология и полезные ископаемые Урала. Тр. Свердловск. Горн. ин-та. 1963. Вып. 42. С. 143–151.

Чесноков Б.В. Об ориентировке кристаллов полевого шпата в миаскитах Вишнёвых гор на Урале // Материалы по геологии и полезным ископаемым Урала. Тр. Свердловск. Горн. ин-та. 1956. Вып. 26. С. 109–113.

Чесноков Б.В. Сравнительная характеристика физических свойств кристаллических и метамиктных пирохлоров Вишнёвых гор // Материалы по геологии и разведке полезных ископаемых Урала. Тр. Свердловск. Горн. ин.та. 1960. Вып. 37. С. 183–191.

Чесноков Б.В., Попов В.А., Никандров С.Н., Баженова Л.Ф., Корнилов Ю.Б., Жданов В.Ф. Тенардит-мирабилитовая минерализация в миаскитах Вишнёвых гор на Урале // Материалы по минералогии месторождений Урала. Свердловск: УНЦ АН СССР, 1984. С. 24–33.

Поступила в редакцию 23 ноября 2015 г.