НОВЫЕ ДАННЫЕ О МИНЕРАЛАХ ЭНДОГЕННЫХ ОБЪЕКТОВ

УДК 549.0

СИНТАКСИЯ ТИТАНИТА, ЭГИРИНА И ЭКЕРМАННИТА В ЩЕЛОЧНЫХ СИЕНИТОВЫХ ПЕГМАТИТАХ ВИШНЁВЫХ ГОР (ЮЖНЫЙ УРАЛ)

В.А. Попов, И.А. Блинов, В.И. Попова

Институт минералогии УрО РАН, г. Muacc; popov@mineralogy.ru

SYNTAXY OF TITANITE, AEGIRINE AND ECKERMANNITE IN ALKALI SYENITE PEGMATITES OF THE VISHNEVYE MOUNTAINS (SOUTH URALS)

V.A. Popov, I.A. Blinov, V.I. Popova

Institute of Mineralogy UB RAS, Miass; popov@mineralogy.ru

В щелочных пегматитах Вишнёвых гор установлена кристаллографическая ориентировка титанита в закономерных сростках с эгирином и железосодержащим экерманнитом: грань $(\overline{1}\,11)$ титанита параллельна (010) пироксена и амфибола, а грань (110) титанита параллельна (110) пироксена. Эгирин является вмещающим минералом (матрицей), в котором наблюдаются ориентированные синхронные вростки титанита и экерманнита. Включения в эгирине других минералов — полевых шпатов, фторапатита, монацита-(Ce), гидроксикальциопирохлора, лантанита-(Ce), циркона, рутила, пирита, галенита и барита — располагаются незакономерно. Установлено также закономерное срастание пирита с кальцитом: тройные оси минералов параллельны, и грань (100) пирита субпараллельна грани $(10\,\overline{1}\,1)$ кальцита. Среди минералов пегматитов Вишнёвых гор впервые встречены экерманнит, гидроксикальциопирохлор и лантанит-(Ce).

Илл. 6. Табл. 2. Библ. 9.

Ключевые слова: ориентированные срастания минералов, титанит, эгирин, экерманнит, гидроксикальциопирохлор, лантанит-(Се), щелочные сиенитовые пегматиты, Вишнёвые горы, Урал.

Crystallographic orientation of titanite intergrowths with aegirine and eckermannite was found in alkali syenite pegmatites of the Vishnevye Mountains: the titanite face ($\overline{1}$ 11) is parallel to pyroxene and amphibole face (010) and the titanite face (110) is parallel to pyroxene face (110). Aegirine is a host mineral for oriented intergrowths of titanite and eckermannite and chaotic inclusions of feldspar, apatite-(F), monazite-(Ce), hydroxycalciopyrochlore, lantanite-(Ce), zircon, rutile, pyrite, galena and barite. Pyrite is characterized by oriented intergrowths which calcite crystals: the axis L₃ of pyrite and calcite is parallel and pyrite face (100) is parallel to calcite face (10 $\overline{1}$ 1). Eckermannite, hydroxycalciopyrochlore and lantanite-(Ce) were found for the first time in pegmatites of the Vishnevye Mountains.

Figures 6. Tables 2. References 9.

Key words: oriented intergrowths of minerals, titanite, aegirine, eckermannite, hydroxycal-ciopyrochlore, lantanite-(Ce), alkali syenite pegmatites, Vishnevye Mountains, Urals.

Введение

Синтаксические и эпитаксические срастания пироксена, амфибола, биотита, нефелина и канкринита в сиенитах и фенитах Вишнёвых и Ильменских гор - явление заметное и важное для моделирования минералообразования (Попов, Баженов, 1988). Широко развита синтаксия разных минералов в пегматитах Ильменских и Вишнёвых гор кварца с полевыми шпатами (графические срастания), разных полевых шпатов (синтаксические пертиты), биотита и мусковита, мусковита и корунда, колумбита и самарскита, колумбита и ильменорутила, фергусонита и ферроколумбита, танталита и стибиотанталита, иксиолита и касситерита, циркона и ксенотима, кордиерита и берилла (Попов и др., 2006). В щелочных сиенитовых пегматитах среди фенитов Вишнёвогорского месторождения (рис. 1) широко распространён титанит в срастаниях с пироксеном и амфиболом. Исследования проведены на образцах из коллекции А.М. Кузнецова, которую он старательно собирает уже много лет и любезно предоставляет для изучения минералов. Один из образцов с титанитом из сиенитовых пегматитов зоны 125 с пироксеном, плагиоклазом, титанитом и апатитом оказался пригоден для наблюдений и гониометрических измерений. Оптические и гониометрические исследования выполнены с применением столика Фёдорова СФ-4; составы минералов в препарате на основе эпоксидной смолы определены на электронном микроскопе VEGA3 Tescan (аналитик И.А. Блинов).

Характеристика минералов парагенезиса

Исследованный образец величиной около 5 см представляет собой агрегат крупноблочного зеленовато-чёрного пироксена с мелкими ориентированными вростками чёрного амфибола до 2 мм и с более крупными — коричневого полупрозрачного титанита, белого полевого шпата и зеленовато-белого апатита (рис. 2).

Форма кристаллов титанита редко пригодна для гониометрических измерений в сростках с другими минералами. В исследованном образце индивиды титанита имеют частично идиоморфную поверхность, частично – индукционную с пироксеном и амфиболом (рис. 3). При вращении образца относительно освещения макроскопически видны одновременные отблески грани (111) титанита и грани (010) пироксена. В другом положении одно-

временно блестят грани (110) обоих минералов. Этот закон срастания минералов можно представить в виде модели (рис. 4) и использовать его при рассмотрении суммативной оптики или других физических свойств в случаях наноразмерных срастаний титанита, амфибола и пироксена.

В целях сохранения всего образца, химический состав минералов парагенезиса анализирован в мелких осколках из разных участков образца.

Пироксен по составу отвечает эгирину (эгиринавгиту с содержанием «авгитового» минала 14—19 %). В центральной части анализированного зерна определены повышенные примеси Са и Мд при пониженных — Na и Fe (табл. 1, ан. 1 μ), а периферическая зона обогащена Na и Fe (см. табл. 1, ан. 2 κ). В периферической части кристаллов эгирина наблюдается увеличение количества вростков амфибола, нередко появляются ориентированные вростки биотита, неориентированные включения кальцита, кварца и других минералов (рис. 5).

В зелёно-чёрном эгирине ~ 3 % площади сечения занимают мелкие ориентированные включения чёрного амфибола до 1-2 мм (см. рис. 3), образующего и наросты такой же ориентировки на выступающих в полость кристаллах эгирина (см. рис. 4). Амфибол относится к экерманниту, состав которого тоже меняется от ранних выделений к поздним с увеличением содержания натрия (см. табл. 1, ан. 3u, 4κ). Ранее в Вишнёвых горах экерманнит среди других амфиболов не отмечался.

Кристаллы титанита величиной до 5–6 мм (см. рис. 3) имеют преобладающие собственные грани форм $\{001\}$, $\{010\}$, $\{100\}$, $\{110\}$ и $\{\overline{1}\,11\}$ с небольшими участками индукционных поверхностей с эгирином и экерманнитом. В составе титанита определены примеси $\mathrm{Nb_2O_5}\,2.95$ мас. % и меньшие – Fe, Al, и Mn (см. табл. 1, ан. 5).

Из полевых шпатов в изученном образце есть мелкие бесцветные и прозрачные зёрна альбита и белые зёрна микроклина (см. табл. 1, ан. 6, 7). Небольшие отклонения от идеальных формул полевых шпатов обусловлены как наличием микровключений одного минерала в другом, так и, возможно, условиями анализа. Отсутствие Са в анализах альбита и микроклина представляется необычным и требует дальнейших исследований в подобных системах, где кальций есть в сокристаллизовавшихся с полевыми шпатами минералах — пироксене, амфиболе, апатите и титаните.

Фторапатит – апатит-(F) – является характерным акцессорным минералом щелочных сиенито-

 $Puc.\ 1.$ Асимметричная пегматитовая титанит-апатит-полевошпат-пироксеновая жила в фенитах зоны 125 Вишнёвых гор. Фото: В.А. Попов.

Fig. 1. Asymmetric pegmatite titanite-apatite-feldspar-pyroxene vein in fenite of zone 125 from Vishnevye Mountains. Photo: V.A. Popov.

Puc. 2. Общий вид исследованного образца из жилы сиенитового пегматита.

Px — эгирин, Ttn — титанит, Fsp — полевой шпат, Pchl — пирох-

Fig. 2. General view of the studied sample of syenite pegmatite vein.

Px – aegirine, Ttn – titanite, Fsp – feldspar, Pchl – pyrochlore.

Рис. 3. Ориентированные срастания кристаллов титанита (*коричневые*) с экерманнит-эгириновым сростком. а – ось [001] эгирина вертикальна, б – горизонтальна. *Белые* вростки – апатит. Отвалы зоны 125. Фото: В.А. Попов.

Fig. 3. Oriented intergrowths of titanite crystals (brown) with eckermannite-aegirine aggregate. Vertical (a) and horizontal (b) axis [001] of aegirine crystal. White – apatite. Dumps of zone 125. Photo: V.A. Popov.

Рис. 4. Схема ориентированного сростка кристаллов титанита (коричневатый), экерманнита (голубой) с эгирином (зелёный).

Fig. 4. Scheme of oriented intergrowth of titanite (brownish), eckermannite (blue) and aegirine (green).

Таблица 1

Химический состав эгирина, экерманнита, титанита и полевых шпатов (мас. %)

Table 1

Chemical composition of aegirine, eckermannite, titanite and feldspar (wt. %)										
	Эгирин		Экерманнит		Титанит	Альбит	Микроклин			
№ ан.	1ų	2κ	3ų	4κ	5	6	7			
SiO ₂	52.20	52.21	52.10	51.24	29.80	67.03	64.60			
TiO ₂	0.69	0.47	0.48	0.43	37.07	_	_			
Al ₂ O ₃	1.52	1.32	2.23	2.90	0.57	19.98	19.41			
Fe ₂ O ₃ *	24.07	26.11	_	_	_	_	_			
FeO	_	_	15.88	15.96	1.58	0.32	_			
CaO	7.44	5.27	2.88	2.83	26.30	_	_			
MnO	0.70	0.60	1.38	1.07	0.29	_	_			
MgO	3.44	2.50	12.67	12.39	_	_	_			
Na ₂ O	9.94	11.52	7.84	8.20	_	12.06	0.16			
K ₂ O	_	_	1.56	1.58	_	0.25	15.97			

96.60 Расчётные формулы (ан. 3 и 4 – на 13 катионов)

2.95

98.56

99.64

1μ	$ (Na_{0.73}Ca_{0.27})(Fe_{0.69}Mg_{0.19}Al_{0.05}Ca_{0.03}Ti_{0.02}Mn_{0.02})(Si_{1.98}Al_{0.02}O_6) (\textit{ha 3 катиона}); $
---------	--

97.03

 $(K_{0.95}Na_{0.01})Al_{1.05}(Si_{2.99}Al_{0.01})O_8$ (на 5 катионов).

100.00

Nb₂O₄

Сумма

100.00

Примечание. Ан. 1y, 3y — центр зёрен, 2κ , 4κ — край. Прочерк — не обнаружено. *) Fe₂O₃ — расчёт. Н₂O не определялась. VEGA3 Tescan, аналитик И.А. Блинов.

Note. Analysis 1μ , 3μ – central part of grain, 2κ , 4κ – rim of grain. Dash – not found. * Fe₂O₃ – is calculated. H₂O was not determined. SEM VEGA3 Tescan, analyst I.A. Blinov.

100.14

 $^{2\}kappa$ $(Na_{0.85}Ca_{0.15})(Fe_{0.74}Mg_{0.14}Ca_{0.06}Al_{0.04}Ti_{0.01}Mn_{0.01})(Si_{1.98}Al_{0.02}O_{6})\ (\textit{ha 3 катиона});$

 $⁽Na_{0.7}K_{0.3})(Na_{1.55}Ca_{0.45})_2(Mg_{2.78}Fe_{1.20}Fe^{3+}_{0.75}Mn_{0.17}Ti_{0.05}Al_{0.05})_5(Si_{7.66}Al_{0.34})_8O_{22}(OH)_2;$ 3u $(Na_{0.81}K_{0.3})(Na_{1.55}Ca_{0.45})_2(Mg_{2.74}Fe_{1.33}Fe^{3+}_{0.65}Mn_{0.13}Ti_{0.05}Al_{0.1})_5(Si_{7.6}Al_{0.4})_8O_{22}(OH)_2;$ 4κ

 $⁽Ca_{0.95}Fe_{0.04}Mn_{0.01})(Ti_{0.94}Nb_{0.04}Al_{0.02})SiO_{5}$ (на 3 катиона); 5

 $⁽Na_{1.01}K_{0.01})(Al_{0.97}Fe_{0.01})(Si_{2.94}Al_{0.06})O_8$ (на 5 катионов); 6

Puc. 5. Кристалл эгирина (Px) с вростками экерманнита (Amp).

Сечение (010). Qz — кварц, белое — гидроксикальциопирохлор. BSE-фото: И.А. Блинов.

Fig. 5. Aegirine crystal (Px) with ingrowths of eckermannite (Amp).

Section (010). Qz – quartz; *white* – hydroxycalciopyrochlore. BSE-image: I.A. Blinov.

вых пегматитов Вишнёвых гор (Бонштедт-Куплетская, 1951; и др.). В изученном образце белые или зеленовато-белые зёрна фторапатита удлинены по оси с [0001] и имеют индукционные поверхности одновременного роста с эгирином и экерманнитом. Состав фторапатита в разных частях индивидов по данным 4-х микрозондовых анализов мало различается и несколько обогащён стронцием и редкими землями (мас. %): CaO 49.85–51.36; SrO 2.16–2.46; P_2O_5 39.73–40.51; La_2O_3 0.43–0.90; Ce_2O_3 0.45–1.5; Nd_2O_3 0.43–0.63; F 3.71–4.10; сумма 99.06–99.39. Эмпирическая формула одного из анализов фторапатита (табл. 2, ан. 1) при расчёте на P = 3 имеет вид ($Ca_{4.84}Sr_{0.13}Ce_{0.02}La_{0.01}Nd_{0.02})_{4.99}(PO_4)_3F_{1.03}$.

Монацит-(Се) в зёрнах до 1 мм редко встречается в эгирине и практически не содержит тория и урана (см. табл. 2, ан. 2); его расчётная формула (на 2 катиона) (Се $_{0.53}$ La $_{0.34}$ Nd $_{0.09}$ Pr $_{0.03}$ Ca $_{0.01}$) $_{1.00}$ PO $_4$.

Редкие зёрна красно-коричневого пирохлора величиной 0.5–1.2 мм изометричны, с красноватыми рефлексами в отражённом свете, с участками граней октаэдра и куба. В составе пирохлора фтор не обнаружен (см. табл. 2, ан. 3), и формула его при

Таблица 2 Химический состав REE-содержащих минералов (мас. %)

Table 2
Chemical composition of REE-bearing minerals (wt. %)

		,		
№ ан.	1	2	3	4
Na ₂ O	_	_	6.88	_
CaÔ	51.31	0.31	16.68	0.56
SrO	2.46	_	_	_
Fe ₂ O ₃	_	_	_	1.80
La ₂ O ₃	0.43	24.57	_	20.46
Ce ₂ O ₃	0.68	36.90	1.68	30.45
Pr ₂ O ₃	_	1.94	_	1.95
Nd ₂ O ₃	0.53	6.26	_	6.35
WO ₃	_	_	0.53	_
P_2O_5	40.27	30.02	_	_
Nb ₂ O ₅	_	_	64.99	0.75
TiŌ,	_	_	8.00	_
ThO,	_	_	1.00	_
UO ₂	_	_	0.24	_
F ²	3.71	_	_	_
*CO,				26.30
*H,Ô				11.38
Сумма	99.39	100.00	100.00	100.00

Примечание. 1 — фторапатит, 2 — монацит-(Ce), 3 — гидроксикальциопирохлор, 4 — лантанит-(Ce). *) CO_2 , H_2O — расчёт. Эмпирические формулы см. текст.

Note. 1 – fluorapatite, 2 – monazite-(*Ce*), 3 – hydroxycalciopyrochlore, 4 – lantanite-(*Ce*). *) CO₂, H₂O was calculated. See text for empirical formulas.

расчёте на B=2 отвечает гидроксикальциопирохлору $(Ca_{1.01}Na_{0.75}Ce_{0.04}W_{0.01}Th_{0.01})_{1.82}(Nb_{1.74}Ti_{0.36})_2O_6$ (ОН) при незначительном содержании примесей.

В эгирине встречены микровключения до 0.3 мм зёрен редкоземельного минерала, предположительно группы лантанита (см. табл. 2, ан. 4). По высокому содержанию в анализе суммы редких земель (59.21 мас. %) этот минерал сходен с монацитом, но фосфор в нём не обнаружен. Высокое содержание Се, отсутствие в анализе фтора (как и в пирохлоре, несмотря на наличие в образце синхронного фторапатита) и низкая сумма анализа позволяют предположить в составе лантанита-(Се) нахождение анионных групп CO₃2- и воды. Расчётная формула $(Ce_{_{0.93}}La_{_{0.63}}Nd_{_{0.19}}Pr_{_{0.06}}Fe_{_{0.11}}Ca_{_{0.05}}Nb_{_{0.03}})_{_{2.0}}(CO_{_{3}})_{_{3}}\cdot \\$ 3.16 Н₂О близка т. н. «металантаниту-(Се)» (Семёнов, 2001), т. е. менее водному лантаниту-(Се), ранее не отмечавшемуся в Вишнёвых горах (Еськова и др., 1964; Попова и др., 2015; и др.). Первичная низкая сумма анализа, возможно, обусловлена неустойчивостью минерала под электронным пучком.

Рис. 6. Схема ориентированного срастания кристаллов пирита (жёлтый) с кальцитом из полостей в сиенитовых пегматитах.

Fig. 6. Scheme of oriented intergrowth of pyrite crystals (yellow) with calcite from syenite pegmatites.

Другие минералы в исследованном образце макроскопически незаметны и выявлены только при электронномикроскопическом изучении в виде мелких синхронных вростков в эгирине — это циркон, рутил, магнетит, пирит, галенит и барит. Состав этих минералов характерен для пироксеновых пегматитов Вишнёвых гор. В цирконе определены примеси, мас. %: HfO_2 0.79 и FeO 0.45, в рутиле — Nb_2O_5 4.04 и Fe_2O_3 1.43, в магнетите — MnO 0.33, V_2O_5 0.21, Cr_2O_3 0.14. Пирит содержит примесь Co 2.49 мас. %, а галенит PbS и барит $BaSO_4$ стехиометричны по составу.

В других образцах из пегматитов зоны 125 на агрегатах пироксена в полостях иногда встречаются друзовые выделения кальцита с пиритом по зонам роста и на поверхности кристаллов. Нередко кубические кристаллики пирита расположены ориентированно относительно граней кристаллов кальцита (рис. 6): тройные оси минералов совпадают, и грани куба {100} пирита субпараллельны граням спайного ромбоэдра {10 1 1} кальцита. Поскольку в доступных нам справочниках и монографиях этого закона срастаний пирита и кальцита не отмечено, можно предположить первую находку таких агрегатов в Вишнёвых горах.

Обсуждение результатов и выводы

Широко развитые явления синтаксии и эпитаксии минералов в пегматитах, возможно, связаны с высокотемпературным минералообразованием, где чаще встречаются ситуации близости или пропор-

циональности параметров элементарных ячеек разных минералов (например, кварц-полевошпатовая «графика»). Ориентированные срастания минералов могут быть от макроуровня до наноуровня. Кристаллографические законы срастаний, изученные на макроуровне, можно использовать и для наносрастаний при разработке учения о типоморфизме минералов и исследовании изоморфной ёмкости или физических свойств минералов.

Обычно наше восприятие пегматитовых образований связывается с крупно-гигантозернистой структурой агрегатов преобладающих породообразующих минералов. Акцессорные и второстепенные минералы могут иметь в пегматитах самую различную величину индивидов - от макроскопической (пегматитовой) до микроскопической и мельче. Возможные срастания на уровне наночастиц (типа биопироболов) определяют отношение исследователей к интерпретациям химических анализов (в том числе - микрозондовых). Плотность заселения вростками других минералов на разных гранях матричного минерала бывает разной. Поэтому «химическую» секториальность кристаллов можно рассматривать и с точки зрения возможной синтаксии минералов. Представляется, что изоморфная ёмкость как характеристика минералов должна быть рассмотрена всесторонне и в соответствии с элементами анатомии кристаллов.

Приведённые в статье примеры ориентированных срастаний титанита с пироксеном (эгирином) и амфиболом (экерманнитом) расширяют данные об ориентированных срастаниях минералов во-

обще и, в частности, - срастаний в пегматитах (Ферсман, 1915; Бакуменко, 1966; Попов, Баженов, 1988; Хисина и др., 1990; Попов и др., 2006; и др.). Кроме ориентированных вростков титанита и экерманнита, в эгирине из сиенитовых пегматитов Вишнёвых гор наблюдались мелкие и редкие неориентированные синхронные вростки целой группы акцессорных минералов. Они принадлежат единому парагенезису, и особенности их состава можно использовать при совершенствовании парагенетического анализа минералов. В частности, интересно отсутствие Са в анализах полевых шпатов при сокристаллизации их с несколькими кальцийсодержащими минералами (титанитом и другими), а также отсутствие Ті в магнетите при нахождении рутила и титанита в минеральном агрегате.

Среди минералов пегматитов Вишнёвых гор впервые встречены экерманнит, гидроксикальциопирохлор и лантанит-(Се). Отсутствие фтора в лантаните-(Се) и гидроксикальциопирохлоре при сокристаллизации с фторапатитом тоже указывает на какие-то особенности механизмов роста кристаллов в конкретных химических средах и при конкретных физических параметрах. Подобные данные полезно накапливать аналогично данным экспериментов, ведущихся пока в более простых по химическому составу системах.

Авторы благодарны А.М. Кузнецову за предоставленные для исследования образцы из пегматитов Вишнёвых гор.

Работа выполнена в рамках темы ГР № 01201374594 «Минералы и минеральные парагенезисы в истории становления редкометалльной минерализации щелочных комплексов Урала».

Литература

Бакуменко И.Т. Закономерные кварцполевошпатовые срастания в пегматитах и их генезис. М.: Наука, 1966. 172 с.

Бонштедт-Куплетская Э.М. Минералогия щелочных пегматитов Вишнёвых гор. М.: АН СССР, 1951. 176 с. и 18 с. вклеек фотографий.

Еськова Е.М., Жабин А.Г., Мухитдинов Г.Н. Минералогия и геохимия редких элементов Вишнёвых гор. М.: Наука, 1964. 319 с.

Попов В.А., Баженов А.Г. Синтаксические срастания нефелина и биотита с амфиболом из Ильменских гор // Материалы к минералогии рудных районов Урала. Свердловск: УрО АН СССР. 1988. С. 46–48.

Попов В.А., Попова В.И., Поляков В.О. Закономерные срастания минералов в пегматитах Ильменских гор // Зап. РМО. СПб. 2006. № 5. С. 48–59.

Попова В.И., Попов В.А, Никандров С.Н., Чурин Е.И., Блинов И.А., Хворов П.В. Карбонаты Вишнёвогорского Zr-Nb-месторождения (Южный Урал) // Минералогия. 2015. № 4. С. 91–102.

Семёнов Е.И. Оруденение и минерализация редких земель, тория и урана (лантаноидов и актинидов). М.: ГЕОС, 2001. 306 с.

 Φ ерсман A.E. Письменная структура пегматитов и причины её возникновения // Изв. АН, серия 6. 1915. С. 1211—1228.

Хисина Н.Р., Сенин В.Г., Петушкова Л.В., Поляков В.О. О природе ориентированных выделений ильменита в ильменорутиле и корунде // Геохимия. 1990. № 9. С. 1352-1359.

Поступила в редакцию 27 июня 2016 г.