УДК 549: 552.331.2:553.493

# РЗЭ- и Sr-МИНЕРАЛИЗАЦИЯ С ПЕРРЬЕРИТОМ-(Се) В ЩЕЛОЧНОМ СИЛИКАТНО-КАРБОНАТНОМ ПАРАГЕНЕЗИСЕ ЭКЗОКОНТАКТОВОЙ ЗОНЫ ВИШНЁВОГОРСКОГО МАССИВА (ЮЖНЫЙ УРАЛ)

## Е.П. Макагонов<sup>1,2</sup>, В.А. Муфтахов<sup>1,2</sup>

<sup>1</sup>Институт минералогии УрО РАН г. Миасс; mak@mineralogy.ru <sup>2</sup>Южно-Уральский государственный университет, филиал в г. Миассе

# REE AND Sr MINERALIZATION WITH PERRIERITE-(Ce) IN ALKALINE SILICATE-CARBONATE ASSEMBLAGE OF THE CONTACT ZONE OF THE VISHNEVOGORSK BLOCK (SOUTH URALS)

## E.P. Makagonov<sup>1,2</sup>, V.A. Muftakhov<sup>1,2</sup>

<sup>1</sup>Institute of Mineralogy UB RAS, Miass; mak@mineralogy.ru <sup>2</sup>National Research South Ural State University, Miass Branch

В апатит-альбит-флогопит-кальцитовых прожилках из эндоконтактовой зоны Вишнёвогорского миаскитового массива определены редкоземельные и стронциевые минералы: перрьерит-(Ce), алланит-(Ce), анкилит-(Ce), монацит-(Ce), «церфосфорхаттонит». Перрьерит-(Ce) описан впервые для Вишнёвогорского комплекса. Состав перрьерита-(Ce) Вишнёвогорского месторождения соответствует средним содержаниям химических элементов, известным для перрьеритов, и приближается к перрьериту-(La) с соотношением формульных коэффициентов La/Ce = 0.72. Такая минеральная ассоциация обнаружена впервые в Вишнёвогорском щелочном комплексе, относится к поздним стадиям формирования щёлочно-карбонатитового комплекса и характеризует переход от щёлочно-силикатного процесса к карбонатитовому.

Илл. 9. Табл. 6. Библ. 19.

Ключевые слова: РЗЭ- и Sr-минерализация, перрьерит-(Се), Вишнёвогорский массив, щелочной силикатно-карбонатный парагенезис.

The REE and Sr minerals (perrierite-(Ce), allanite-(Ce), ankilite-(Ce), monazite-(Ce), «cerphosforhuttonite») were identified in the apatite-albite-phlogopite-calcite veins of the contact zone of the Vishnevogorsk miaskite block. Perrierite-(Ce) was described for the first time for the Vishnevogorsk complex. The composition of perrierite-(Ce) corresponds to the average content of chemical elements known for perrierites and is similar to perrierite-(La) with La/Ce ratio of 0.72. This mineral assemblage is found for the first time in the Vishnevogorsk alkaline complex, was crystallized at the late stages of formation of alkaline-carbonatite complex and characterizes the alkaline-silicate-tocarbonatite transition.

Figures 9. Tables 6. References 19.

*Key words:* REE and Sr minerals, perrierite-(Ce), Vishnevogorsk block, alkaline silicate-carbonate assemblage.

### Введение

Перрьерит первоначально был установлен в песках, образованных в результате выветривания вулканических пород Италии (Bonatti, Gottardi, 1950). Нередки находки этого минерала в гранитных пегматитах (Raade, 1970; Takubo, Nishimura, 1953; Lima-de-Faria, 1962; и др.). В породах, связанных со щелочными массивами, известен в эгиринизированных пегматитах в ассоциации с цирконом, рутилом и другими минералами в массиве Бурпала Сев. Прибайкалья (Портнов, 1964), в жилах пегматитов нозеановых сиенитов в ассоциации с эвдиалитом, цирконом, ильменитом в Ловозерском массиве на Кольском полуострове (Семёнов, 1972), в микроклин-эгириновых пегматитах с цирконом, пирохлором, лопаритом, магнетитом и другими минералами в норвежском районе Осло (Segalstad, Larsen, 1978).

В Вишнёвогорском месторождении прожилки с перрьеритом-(Се) и другими РЗЭ- и Srминералами обнаружены в глыбах из отвалов карьера, заложенного на свите пегматитовых жил № 124–134 в фенитовом ореоле северного окончания миаскитового массива в породах вишнёвогорской толщи, сложенной гнейсами, амфиболитами, кварцитами (рис. 1). В составе жильной свиты участвуют миаскитовые, сиенитовые и фенитизированные гранитные пегматиты, а также карбонатиты.

Основные редкометалльные минералы пегматитов – пирохлор и циркон. Редкоземельная минерализация приурочена к поздним ассоциациям в пегматитовых жилах, а также наблюдается в полевошпат-биотит-кальцитовых и амфибол-кварцевых прожилках во вмещающих породах. Среди этих образований на участке с жилами № 124–134 ранее были отмечены РЗЭ- и Sr-минералы: чевкинит-(Се),

*Рис. 1.* Геологическая схема северной части Вишнёвогорского миаскитового массива (*по* Б.М. Роненсону, 1966; с дополнениями).

1 – метаморфические породы (гнейсы, амфиболиты, кристаллосланцы); 2 – миаскиты; 3 – фениты; 4 – габбро; 5 – серпентиниты; 6 – пегматиты миаскитовые и сиенитовые; 7 – нарушения; 8 – контуры карьеров; 9 – место отбора образцов.

*Fig. 1.* Geological scheme of the northern part of the Vishnevogorsk miaskite block (*modified after* B.M. Ronenson, 1966).

1 – metamorphic rocks (gneisses, amphibolites, crystalline schists); 2 – miaskites; 3 – fenites; 4 – gabbros; 5 – serpentinites; 6 – miaskitic pegmatites and syenites; 7 – faults; 8 – contours of quarries; 9 – sampling place. алланит-(Се), монацит-(Се), ферсмит, бастнезит, кальциостронцианит (Еськова и др., 1964; и др.).

В результате проведённых нами исследований в апатит-альбит-флогопит-кальцитовых прожилках установлены следующие редкоземельные минералы: алланит-(Се), анкилит-(Се), монацит-(Се), «церфосфорхаттонит», а также новый для Урала – перрьерит-(Се).

### Методы исследования

Химический состав минералов исследован в Минералогическом музее им. А.Е. Ферсмана (Москва) на микрозонде JXA-733 JEOL (аналитик В.А. Муфтахов). Рентгенограммы сняты в Институте минералогии УрО РАН на дифрактометре ДРОН-2 с графитовым монохроматором с Сианодом, шаг съёмки 0.02 °/мин; внутренний эталон – кварц (аналитики П.В. Хворов, Е.Д. Зенович). ИК-спектры сняты Н.И. Кашигиной (ИМин УрО РАН) на спектрометре UR-20 в таблетках с КВг. Термический анализ проводился на дериватографе Q-1500D при прокаливании от 22 до 1000 °C (аналитик Н.И. Кашигина). Гониометрия кристаллов проведена Е.П. Макагоновым с использованием гониометра ZRG-3 и Фёдоровского столика СФ-4.

### Породообразующие минералы прожилков

Прожилки апатит-кальцит-альбит-флогопитовые с РЗЭ-редкометалльной минерализацией мощностью 1–5 см залегают в амфиболите под углами 30–45° к слоистости (рис. 2). Здесь же в амфиболитах под острым углом к слоистости наблюдаются жилы, сложенные агрегатом биотита с гнёздами альбита.





*Рис. 2.* Прожилки с РЗЭ-редкометалльной минерализацией в амфиболите.

амфиболит; 2 – амфиболит флогопитизированный и карбонатизированный; 3 – агрегаты биотита с альбитом; 4 – флогопит-альбит-кальцитовый агрегат с перрьеритом-Се), алланитом-(Се), ильменитом, карбонатами и фосфатами Sr и РЗЭ.

*Fig. 2.* Veins with REE-rare metal minerals in amphibolites.

1 – amphibolite; 2 – carbonatized and phlogopitized amphibolite; 3 – aggregates of biotite and albite; 4 – phlogopite-albite-calcite aggregate with perrerite-(Ce), allanite-(Ce), ilmenite, and Sr and REE carbonates and phosphates.

Химический состав зёрен фторфлогопита (мас. %)

Table 1

Таблица 1

| Chemical composition of fluorophlogopite (wt. %)        |       |        |  |  |  |
|---------------------------------------------------------|-------|--------|--|--|--|
| № ан.                                                   | 1     | 2      |  |  |  |
| SiO <sub>2</sub>                                        | 38.56 | 38.09  |  |  |  |
| TiO                                                     | 2.13  | 1.82   |  |  |  |
| Al <sub>2</sub> O <sub>2</sub>                          | 11.85 | 12.51  |  |  |  |
| FeO                                                     | 13.94 | 14.52  |  |  |  |
| MnO                                                     | 0.41  | 0.53   |  |  |  |
| MgO                                                     | 16.59 | 15.90  |  |  |  |
| CaO                                                     | 0.14  | _      |  |  |  |
| BaO                                                     | 0.64  | 1.64   |  |  |  |
| Na <sub>2</sub> O                                       | _     | 0.35   |  |  |  |
| K,Ô                                                     | 9.16  | 9.41   |  |  |  |
| É                                                       | 5.49  | 5.80   |  |  |  |
| H <sub>2</sub> O*                                       | 2.87  | 2.35   |  |  |  |
| $-O^2 = F_2$                                            | 2.31  | 2.44   |  |  |  |
| Сумма                                                   | 99.47 | 100.48 |  |  |  |
| Расчётные формулы ( $\Sigma$ зарядов = 22)              |       |        |  |  |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |       |        |  |  |  |

Примечание:  $H_2O^*$  – рассчитано по (F + OH) = 2.00. Note:  $H_2O^*$  – recalculated to (F + OH) = 2.00.

Строение прожилков зональное. В зальбандах наблюдается агрегат флогопита с альбитом и кристаллами апатита. На этот агрегат наросли отдельные кристаллы и друзочки перрьерита-(Се) с выделениями алланита-(Се) и ильменита. Центральная часть прожилков выполнена агрегатом кальцита мелко- и среднезернистой структуры. В виде включений в перрьерите-(Се) отмечаются анкилит-(Се) и «церфосфорхаттонит». По трещинкам в кристалле апатита наблюдаются выделения монацита-(Се).

#### ки частично смяты. Сос килит-(Се) и «церфоскристалле апатита наа-(Се). и «церфоса. Се). и «церфосс коэффициентом желе 0.32–0.34.

Основу прожилков, содержащих редкоземельные минералы, составляют породообразующие минералы – флогопит, альбит, апатит, кальцит. Флогопиты образуют агрегаты из таблитчатых зёрен. Размер индивидов флогопита 0.1–2.5 см, цвет чёрный. Индивиды флогопита часто расщеплены и частично смяты. Состав его соответствует железистой разновидности *фторфлогопита* (табл. 1) с коэффициентом железистости Fe / (Fe + Mg) = 0.32–0.34.



Рис. 3. Парагенезисы апатита.

а – в кальцит-флогопит-альбитовом агрегате; б – в перрьерите-Се). Ар – апатит, Аb – альбит, Са – кальцит, Pr – перрьерит-(Се), Mz – монацит-(Се), Lv – ловерингит-(Се)?

Fig. 3. Assemblages of apatite.

a – in calcite-phlogopite-albite aggregate; b – in perrierite-(Ce). Ap – apatite, Ab – albite, Ca – calcite, Pr – perrierite-(Ce), Mz – monazite-(Ce), Lv – loveringite-(Ce)?

Таблица 2

# Химический состав зёрен кальцита (мас. %) *Table 2*

Chemical composition of calcite (wt. %)

| № ан.                                                                          | 1                              | 2     | 3      | 4     |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------|-------|--------|-------|--|--|--|--|
| CaO                                                                            | 52.33                          | 52.04 | 52.54  | 53.10 |  |  |  |  |
| SrO                                                                            | 1.37                           | 1.83  | 1.73   | 1.09  |  |  |  |  |
| MnO                                                                            | 1.20                           | 1.10  | 0.87   | 1.12  |  |  |  |  |
| MgO                                                                            | 0.19                           | 0.45  | 0.45   | _     |  |  |  |  |
| FeO                                                                            | 0.42                           | 0.61  | 0.44   | 0.33  |  |  |  |  |
| $Sc_2O_3$                                                                      | _                              | _     | 0.47   | _     |  |  |  |  |
| Y,0,                                                                           | _                              | _     | 0.33   | _     |  |  |  |  |
| $ThO_2$                                                                        | _                              | 0.14  | _      | _     |  |  |  |  |
| UO,                                                                            | _                              | 0.11  | _      | _     |  |  |  |  |
| Al <sub>2</sub> O <sub>3</sub>                                                 | $Al_2O_3   0.55   -   -   -  $ |       |        |       |  |  |  |  |
| CÕ,*                                                                           | 42.97                          | 43.27 | 43.37  | 43.14 |  |  |  |  |
| Сумма                                                                          | 99.03                          | 99.55 | 100.20 | 98.78 |  |  |  |  |
| Расчётные формулы (на 1 катион)                                                |                                |       |        |       |  |  |  |  |
| 1. $(Ca_{0.95}Sr_{0.01}Mn_{0.02}Fe_{0.01}Al_{0.01})_{1.00}C_{1.0}O_3;$         |                                |       |        |       |  |  |  |  |
| 2. $(Ca_{0.95}Sr_{0.02}Mn_{0.02}Mg_{0.01}Fe_{0.01})_{1.00}C_{1.0}O_3;$         |                                |       |        |       |  |  |  |  |
| 3. $(Ca_{0.94}Sr_{0.02}Mn_{0.01}Mg_{0.01}Fe_{0.01}Sc_{0.01})_{1.0}C_{1.0}O_3;$ |                                |       |        |       |  |  |  |  |
| 4. $(Ca_{0.96}Sr_{0.01}Mn_{0.02}Fe_{0.01})_{1.00}C_{1.0}O_3.$                  |                                |       |        |       |  |  |  |  |

Примечание:  $CO_2^*$  – рассчитано по  $(CO_3) = 1$ . Note:  $CO_2^*$  – recalculated to  $(CO_3) = 1$ .

Альбит наблюдается в виде неправильных зёрен размером до 0.5 см в агрегате флогопита. В химическом составе альбита определено 0.18–0.24 мас. % СаО. Изредка отмечается примесь железа до 0.12 мас. %.

Агрегаты *кальцита* мелко- среднезернистой структуры заполняют центральную зону прожилков. В составе примесей наиболее часто обнаруживаются Sr, Mn, Fe, реже Mg, а также Sc, Y и др.; содержание изоморфных примесей в кальците в сумме не превышает 0.05 формульных коэффициентов (табл. 2).

Содержание апатита неравномерное, от 5 до 15 об. %. Индивиды этого минерала наблюдаются в виде светло-зелёных кристаллов до 1.5 мм в альбите и перрьерите-(Се) (рис. 3). По классификации минералов группы апатита (Pasero et al., 2010), среди исследованных нами апатитов выявлены *фторапатит* (табл. 3, ан. 1–2) и *гидроксилапатит* (см. табл. 3, ан. 3); во всех анализах существенна примесь редких земель, а также стронция.

## РЗЭ- и Sr-минерализация

Главныйредкоземельный минерал–*перрьерим*-(*Ce*) – новый для Ильмено-Вишнёвогорского комплекса. Цвет минерала смоляно-чёрный, просвечивает в краях тёмно-красным цветом. Кристаллы перрьерита-(Ce) таблитчатого облика, уплощённые по оси [010], моноклинной сингонии. На кристаллах наиболее развиты грани форм  $a\{100\}, c\{001\}, o\{11\}, e\{010\}, f\{\overline{2}01\}, r\{\overline{1}01), s\{12\}, менее разви$  $ты – m\{110\} (рис. 4). Изредка обнаруживаются гра$  $ни форм <math>\{111\}, \{211\}, \{311\}.$ 

Перрьерит-(Се) метамиктный. Дифрактограммы перрьерита-(Се), полученные без прокаливания и прокалённого в атмосфере аргона при разных температурах, представлены на рис. 5. Дифрактограммы непрокалённого перрьерита и после прокаливания до 600 °С практически одинаковы: на кривых с фоновыми колебаниями заметны малоамплитудные пики, характерные для перрьерита-(Се).

Таблица 3

Химический состав фторапатитов (1–2), гидроксилапата (3), монацитов-(Се) (4–5) и анкилита-(Се) (6–7) (мас. %) *Table 3* 

| № ан.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1      | 2      | 3     | 4     | 5     | 6      | 7      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|-------|-------|--------|--------|
| CaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.86  | 51.33  | 51.50 | 0.56  | 1.00  | 1.51   | 1.77   |
| SrO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.18   | 1.87   | 1.81  | 0.80  | _     | 17.87  | 17.19  |
| MnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _      | _      | 0.08  | _     | _     | _      | _      |
| Fe <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _      | _      | _     | _     | _     | 0.14   | 0.26   |
| Y,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -      | _      | _     | _     | _     | 0.34   | 0.54   |
| La <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.69   | _      | 0.63  | 25.75 | 26.10 | 17.99  | 18.28  |
| Ce <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.47   | 0.69   | 1.41  | 31.97 | 33.04 | 23.67  | 23.15  |
| Pr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | _      | 0.39  | 2.02  | 2.31  | 2.15   | 2.51   |
| Nd <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54   | 0.62   | 0.52  | 7.31  | 5.97  | 4.98   | 4.93   |
| Sm <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37   | _      | _     | 0.66  | _     | _      | 0.41   |
| Eu <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | 0.38   | 0.15  | _     | _     | _      | —      |
| Gd <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | 0.42   | _     | 0.54  | —     | 0.58   | 0.24   |
| Er <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.46   | _      | _     | _     | _     | _      | —      |
| Yb <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | 0.40   | _     | _     | _     | 0.27   | 0.39   |
| Tb <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | _      | _     | 0.53  | _     | 0.51   | 0.26   |
| Dy <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | _      | _     | 0.56  | _     | 0.35   | 0.41   |
| Lu <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.48   | _      | _     | _     | _     | 0.16   | _      |
| ThO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.36   | _      | 0.39  | 0.76  | 0.56  | 0.23   | —      |
| Na <sub>2</sub> Õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      | 0.66   | _     | _     | _     | _      | —      |
| Sc <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.46   | _      | _     | _     | _     | _      | _      |
| $P_2O_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.76  | 40.44  | 39.89 | 28.33 | 28.02 | _      | _      |
| SiO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92   | 1.18   | 0.94  | _     | _     | _      | 0.23   |
| TiO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -      | _      | _     | _     | _     | 0.08   | _      |
| $Al_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      | _      | _     | _     | _     | 0.22   | _      |
| WO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | _      | _     | _     | 1.10  | _      | _      |
| SO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.52   | 0.55   | 0.32  | _     | _     | _      | —      |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.07   | 3.06   | _     | _     | _     | _      | -      |
| H <sub>2</sub> O*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      | -      | 1.73  | _     | _     | 6.99   | 6.97   |
| CO <sub>2</sub> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      | -      | _     | _     | -     | 22.78  | 22.72  |
| Сумма                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.14 | 101.60 | 99.76 | 99.79 | 98.10 | 100.82 | 100.26 |
| $P_{2} = \frac{1}{2} \frac{1}$ |        |        |       |       |       |        |        |

Chemical composition of fluorapatite (1-2), hydroxylapatite (3), monazite-(Ce) (4-5) and ancilite-(Ce) (6-7) (wt. %)

Расчётные формулы (1-3 на 8 катионов, 4-5 на O = 4, 6-7 на 2 катиона)

 $1. (Ca_{4.75}Sr_{0.11}Sc_{0.03}La_{0.02}Ce_{0.05}Nd_{0.02}Sm_{0.01}Er_{0.01}Lu_{0.01}Th_{0.01})_{5.02}(P_{2.87}Si_{0.08}S_{0.03})_{2.98}O_{12}(F_{0.57}O_{0.24})_{0.81};$ 

 $2. \ (Ca_{4.68}Na_{0.11}Sr_{0.09}Ce_{0.02}Nd_{0.02}Eu_{0.01}Gd_{0.01}Yb_{0.01})_{4.95}(P_{2.91}Si_{0.10}S_{0.04})_{3.05}O_{12}(F_{0.82}O_{0.11})_{0.93};$ 

 $3. (Ca_{4.77}Sr_{0.09}La_{0.02}Ce_{0.04}Nd_{0.02}Pr_{0.01}Mn_{0.01}Th_{0.01})_{4.97}(P_{2.93}Si_{0.08}S_{0.02})_{3.03}O_{12}(O_{0.06}(OH)_{1.00})_{1.06};$ 

 $4. \ (Ce_{0.47}La_{0.38}Nd_{0.10}Pr_{0.03}Sm_{0.01}Gd_{0.01}Tb_{0.01}Dy_{0.01}Ca_{0.02}Sr_{0.02}Th_{0.01})_{1.07}(P_{0.96}Si_{0.02})_{0.98}O_{4.00};$ 

 $5.\;(Ce_{0.50}La_{0.39}Nd_{0.09}Pr_{0.03}Ca_{0.04}Th_{0.01})_{1.06}P_{0.97}O_{4.00};$ 

 $6. (Sr_{0.67}Ca_{0.10}Al_{0.02}Fe_{0.01}Y_{0.01})_{0.81}(Ce_{0.56}La_{0.43}Nd_{0.11}Pr_{0.05}Gd_{0.01}Tb_{0.01}Dy_{0.01}Yb_{0.01})_{1.19}(CO_3)_{2.00}(OH) \cdot H_2O;$ 

 $7. (Sr_{0.64}Ca_{0.12}Y_{0.02}Fe_{0.01}Si_{0.01})_{0.80}(Ce_{0.55}La_{0.43}Nd_{0.11}Pr_{0.06}Sm_{0.01}Gd_{0.01}Tb_{0.01}Dy_{0.01}Yb_{0.01})_{1.20}(CO_3)_{2.00}(OH) + H_2O.$ 

Примечание:  $CO_3^*$  и  $H_2O^*$  – расчёт. Note:  $CO_3^*$  and  $H_2O^*$  – recalculation.





*Рис.* 4. Перрьерит-(Се) Вишнёвогорского месторождения.

а – фото кристалла; б–в – идеализированные формы кристаллов. Фото и рис.: Е.П. Макагонов.

*Fig.* 4. Perrierite-(Ce) of the Vishnevogorsk deposit.

a – photo of crystal; 6-B – idealized crystal shapes. Photo and fig.: E.P. Makagonov.



*Рис.* 5. Дифрактограммы непрокалённого перрьерита-(Ce) (1) и после прокаливания образцов при температурах (°C): 2 – 650; 3 – 700; 4 – 800; 5 – 1000.

*Fig. 5.* X-ray patterns of fresh perrierite-(Ce) (1) and after annealing at temperatures of (°C ): 2 - 650; 3 - 700; 4 - 800; 5 - 1000.

Выше температуры 650 °С амплитуды характерных пиков перрьерита возрастают. Дифрактограммы, снятые с минерала, прокалённого при температурах 800 °С и 1000 °С, идентичны (см. рис. 5, графики 4 и 5). Межплоскостные расстояния перрьерита-(Се), прокалённого при 1000 °С, весьма близки к данным для перрьерита-(La) (табл. 4). Это связано с большой долей лантанового минала в исследованном минерале. С другой стороны, в химическом составе опубликованного перрьерита-(La) (Чуканов и др., 2011) также значительна доля цериевого минала Се/La = 0.85 (рассчитано нами). Рассчитанные параметры элементарной ячейки вишневогорского перрьерита-(Се): а 13.67, b 5.658, с 11.737, β 113.52°.

На кривой нагревания метамиктного перрьерита-(Се) в интервале 315–500 °С проявляются мелкие эндотермические прогибы, связанные с выделением воды (рис. 6). Потеря веса при нагревании составила 1.1 мас. %. Чётко выраженный экзотермический пик при 780 °С показывает границу полного перехода перрьерита-(Се) в кристаллическое состояние.

В ИК-спектре непрокалённого минерала проявлены широкие полосы поглощения 415, 467, 615, 648, 933, 1430, 1470, 1538, 1557, 1575, 1730 см<sup>-1</sup> (рис. 7, график 1). В спектре перрьерита-(Се), прокалённого до 1000 °С, наблюдаются более чёткие полосы с модами на частотах 474, 540, 615, 853, 913, 1058, 1122, 1543, 1561, 1578, 1720 см<sup>-1</sup> (см. рис. 7, график 2). Характер кривых как непрокалённого, так и прокалённого перрьерита Вишнёвогорского месторождения подобен опубликованным ИКспектрам перрьеритов (Chukanov, 2014).

Химический состав перрьерита-(Се) относительно постоянный и соответствует средним содержаниям химических элементов для перрьеритов. По соотношению La/Ce = 0.72 приближается к минеральному виду перрьериту-(La). Главное отличие в содержании воды, связанной со степенью метамиктности. Для определения изменения химического состава при метамиктизации микрозондовые анализы были разделены на 5 групп по сумме содержаний оксидов (мас. %): 1) более 98.5; 2) 98.5–96.0; 3) 96.0–93.0; 4) 93.0–90.0; 5) < 90.0 (табл. 5, ан. 1–5). В пробах с суммой оксидов > 98.5 мас. % среднее отклонение содержаний  $SiO_2$ ,  $TiO_2$ ,  $Fe_2O_3 + FeO$  и  $Ce_2O_3 + La_2O_3$  не превышают 1 % отн.; СаО и Nd<sub>2</sub>O<sub>3</sub> - 6.7 %; Al<sub>2</sub>O<sub>3</sub>, SrO, Pr<sub>2</sub>O<sub>2</sub>-16 %. Эти компоненты составляют 95.3 мас. % оксидов (см. табл. 5, ан. 1). Валентность железа при расчёте анализа определена по компенсации анионного заряда.

При увеличении степени метамиктности и водонасыщения возрастает содержание Si, Ti, Sr и уменьшается содержание РЗЭ, Ca, Al. Это наглядно иллюстрируют графики изменения формульных коэффициентов по группам анализов, рассчитанных по данным из таблицы 5 (рис. 8).

На снимках в обратно-отражённых электронах водонасыщенные участки выглядят более тёмными. Обычно распределение отдельных разновидностей внутри индивидов наблюдается в виде пятен неправильной формы (рис. 9а), иногда прожилковидные. Водонасыщенные разности часто приурочены к трещинам и краям индивидов. Изредка в центральных частях отмечаются своеобразные субграфические структуры (см. рис. 9б).

Поверхности соприкосновения индивидов перрьерита-(Се) с флогопитом, алланитом и кальцитом (см. рис. 9а, г, е) частично индукционные, по отношению к апатиту– ксеноморфные.

В перрьерите-(Се) часто наблюдаются цепочечные выделения *ильменита* неправильной формы. Местами ильменит отмечается в виде пластинок, наросших на перрьерит-(Се) (см. рис. 9д). Минерал

Таблица 4

### Рентгенографические данные для перрьеритов

Table 4

| X-ray data for perrerite |                      |                                 |                      |        |      |       |      |
|--------------------------|----------------------|---------------------------------|----------------------|--------|------|-------|------|
|                          |                      | 1 2                             |                      | 3      |      |       |      |
| d <sub>изм</sub> , Å     | I <sub>изм</sub> , % | hkl                             | d <sub>выч</sub> , Å | d, Å   | I, % | d, Å  | I, % |
| 10.86                    | 10                   | 001                             | 10.76                | 10.758 | 13.4 |       |      |
| 5.40                     | 17                   | 002                             | 5.38                 | 5.379  | 18.3 | 5.34  | 15   |
| 5.17                     | 18                   | 110                             | 5.16                 | 5.158  | 26.1 | 5.15  | 10   |
| 4.99                     | 9                    | 11 1                            | 4.98                 | 4.983  | 5.7  | 4.98  | 5    |
| 4.08                     | 17                   | $11\overline{2}$                | 4.07                 | 4.074  | 25.5 |       |      |
| 3.586                    | 22                   | 003                             | 3.587                | 3.586  | 12.4 | 3.57  | 10   |
| 3.547                    | 20                   | $31\overline{1}$                | 3.549                | 3.549  | 29   | 3.537 | 40   |
| 3.453                    | 13                   | 112                             | 3.451                | 3.449  | 20.7 | 3.435 | 5    |
| 3.385                    | 6                    | $31\overline{2}$                | 3.379                | 3.847  | 2.8  |       |      |
| 3.343                    | 10                   | $40\overline{2}$                | 3.351                | 3.381  | 7.0  |       |      |
| 3.199                    | 12                   | $11\bar{3}$                     | 3.202                | 3.203  | 3.9  |       |      |
| 3.139                    | 8                    | 400                             | 3.134                | 3.130  | 20.1 | 3.106 | 10   |
| 3.037                    | 25                   | $40\overline{3}$                | 3.035                | 3.038  | 26.3 | 3.021 | 15   |
| 2.977                    | 100                  | 313                             | 2.975                | 2.978  | 88.9 | 2.959 | 90   |
| 2.947                    | 97                   | 311                             | 2.950                | 2.947  | 100  | 2.938 | 100  |
| 2.828                    | 38                   | 020                             | 2.829                | 2.830  | 39.7 | 2.822 | 60   |
| 2.729                    | 19                   | 401                             | 2.730                | 2.727  | 11.5 | 2.722 | 5    |
| 2.688                    | 35                   | 004                             | 2.690                | 2.689  | 39.7 | 2.677 | 70   |
| 2.562                    | 10                   | $\overline{1}$ $\overline{1}$ 4 | 2.564                | 2.564  | 10.5 |       |      |
| 2.499                    | 15                   | $022, 22\overline{2}$           | 2.490                | 2.504  | 16.8 | 2.495 | 15   |
| 2.240                    | 15                   | $40\overline{5}$                | 2.240                | 2.241  | 9.7  |       |      |
| 2.219                    | 8                    | 023                             | 2.221                | 2.222  | 9.9  | 2.220 | 5    |
| 2.173                    | 31                   | 42 T                            | 2.173                | 2.173  | 25.7 |       |      |
|                          |                      |                                 |                      | 2.162  | 12.7 | 2.169 | 20   |
| 2.157                    | 25                   | $11\bar{3}$                     | 2.154                | 2.155  | 11.8 | 2.154 | 20   |
| 2.132                    | 10                   | 313                             | 2.135                | 2.132  | 11.3 |       |      |
| 2.108                    | 10                   | $11\bar{5}$                     | 2.113                | 2.108  | 3.5  | 2.097 | 5    |
| 1.948                    | 26                   | 223                             | 1.948                | 1.9495 | 30.7 | 1.949 | 20   |
| 1.838                    | 9                    | $16\overline{2}$                | 1.836                | 1.8375 | 8.5  | 1.821 | 3    |
| 1.791                    | 11                   | T 32                            | 1.795                | 1.7939 | 4.5  | 1.781 | 3    |
| 1.757                    | 13                   | <u>6</u> 23                     | 1.756                | 1.7572 | 3.6  |       |      |
| 1.745                    | 8                    | 331                             | 1.743                | 1.7431 | 3.5  | 1.735 | 5    |
| 1.727                    | 12                   | 224                             | 1.725                | 1.7262 | 12.0 | 1.720 | 3    |
| 1.658                    | 15                   | 331                             | 1.656                | 1.6556 | 11.8 | 1.650 | 10   |
| 1.608                    | 9                    | $\overline{8}05$                | 1.608                | 1.6094 | 1.4  |       |      |
| 1.593                    | 13                   | 315                             | 1.595                | 1.5932 | 17.1 | 1.587 | 5    |
| 1.572                    | 7                    | 716                             | 1.570                | 1.5718 | 3.9  |       |      |

*Примечание:* 1 – перрьерит-(Се), Вишнёвогорск; 2 – перрьерит-(La) (http://database.iem.ac.ru/mincryst/rus/s\_carta.php?+8545); 3 – гидротермально перекристаллизованный перрьерит, Ильмены (Ito, 1967).

*Note:* 1 – perrierite-(Ce), Vishnevogorsk; 2 – perrierite-(La), (http://database.iem.ac.ru/mincryst/rus/s\_carta. php?+8545); 3 – hydrothermally recrystallized perrierite; Ilmeny Mountains (Ito, 1967).

содержит от 10 до 30 % пирофанитового минала, поэтому его можно отнести к марганцевой разновидности – манганильмениту (табл. 6, ан. 1–3).

Внутри индивида перрьерита-(Се) вместе с монацитом-(Се) и апатитом обнаружено зерно минерала, близкого по составу к ильмениту, но с содержанием суммы РЗЭ 7.64 мас. %. Подобное содержание характерно для минералов группы кричтонита. Химический состав минерала наиболее близок к минеральному виду из этой группы – *ловерингиту-(Се)* (см. рис. 36; см. табл. 6, ан. 4).



*Рис. 6.* Дериватограмма перрьерита-(Се) из Вишнёвогорского месторождения.

*Fig.6.* Thermograms of perrierite-(Ce) from the Vishnevogorsk deposit.

В кавернах и по периферии индивидов перрьерита-(Се) располагаются выделения *алланита-(Се)* (см. рис. 9а, в), содержащие 9.15–12.98 Се<sub>2</sub>О<sub>2</sub> и 7.01–10.06 La<sub>2</sub>O<sub>3</sub> (см. табл. 5, ан. 6–9).

Взаимоотношения алланита-(Се) с перрьеритом-(Се) показывают на его более позднюю кристаллизацию (см. рис. 9а, г).

В мелких кавернах в кристалле перрьерита-(Се) располагается *анкилит-(Се)*, местами совместно с алланитом-(Се) (см. рис. 9а, в, г). В анкилите-(Се) при увеличении содержания РЗЭ увеличивается содержание молекулярной воды и уменьшается содержание Sr (см. табл. 3).

*Монацит-(Се)* наблюдается в виде агрегата, цементирующего раздробленные части кристалла апатита внутри индивида перрьерита-(Се) (см. рис. 36). В монаците есть небольшие примеси Са, Sr и Th (см. табл. 3, ан. 4–5).

Кроме отмеченных минералов, в перрьерите-(Се) на границе с алланитом-(Се) обнаружено зерно минерала с составом (мас. %): ThO<sub>2</sub> 24.96; Се<sub>2</sub>O<sub>3</sub> 22.13; La<sub>2</sub>O<sub>3</sub> 15.59; Nd<sub>2</sub>O<sub>3</sub> 4.59; Pr<sub>2</sub>O<sub>3</sub> 2.34; SrO 2.70; CaO 0.54; TiO<sub>2</sub> 1.33; FeO 0.91; MnO 0.16; Sc<sub>2</sub>O<sub>3</sub> 0.23; P<sub>2</sub>O<sub>5</sub> 13.45; SiO<sub>2</sub> 7.45; сумма 96.38 (см. рис. 9а, Сег). Данный состав близок к «церфосфорхаттониту», который определяется как смесь хаттонита и монацита (Павленко и др., 1965). Полученный нами анализ соответствует разности монацита-(Се) с содержанием 38 % хаттонитовой молекулы. Ранее подобный минерал на Вишнёвогорском месторождении был определён как редкоземельный торогуммит (Еськова и др., 1964).

*Рис.* 7. Инфракрасные спектры непрокалённого перрьерита-(Се) (1) и прокалённого при температуре 1000 ° С (2).

*Fig.* 7. Infrared spectra of fresh perrierite-(Ce) (1) and that annealed at  $1000 \text{ }^{\circ}\text{C}$  (2).

### Обсуждение результатов и выводы

В районе жил № 124–134 Вишнёвогорского месторождения устанавлена последовательность кристаллизации минералов прожилков: заполнение апатит-биотит-альбитовым агрегатом трещин, сопровождаемое метасоматическим замещением этими же минералами (с примесью карбоната) амфибола и плагиоклаза в амфиболитах. После мелких подвижек, приводящих к частичному смятию и расщеплению пластинок флогопита и раздроблению кристаллов апатита, трещинки в апатите местами цементировались монацитом-(Се). На сформированные агрегаты нарастали кристаллы перрьерита-(Се) с ильменитом, а затем происходило образование алланита-(Се) и Sr-минералов. Остаточные трещины выполнялись кальцитом. Геохимически ассоциация характеризует переход от щёлочно-силикатного процесса к карбонатному. В общей последовательности развития Вишнёвогорского минерального комплекса данный парагенезис относится к поздним стадиям формирования щёлочно-карбонатитового процесса.

Перрьерит-(Се) диморфен чевкиниту-(Се). У чевкинита из щелочных комплексов Урала, прокалённого до температуры 800 °С, значения межплоскостных расстояний идентичны этому же минералу из других месторождений (Еськова и др., 1964). Возможно, что часть минералов, ранее описанных в Вишнёвогорском месторождении как чевкинит, относится к перрьериту-(Се). Для метамиктного минерала из Ильмен состава чевкинита,

27

Таблица 5

Table 5 Chemical composition of perrierite-(Ce) (1-5) and allanite-(Ce) (6-9) (wt. %) 9 № ан. 1 2 3 4 5 6 7 8 SiO, 19.81 20.02 20.31 20.37 20.53 29.51 29.74 32.34 31.77 TiO<sub>2</sub> 17.85 17.61 18.41 18.89 20.55 1.13 1.44 0.44 0.56 Al<sub>2</sub>O<sub>2</sub> 2.22 1.92 1.80 1.77 1.46 11.08 11.13 13.69 13.51 Fe<sub>2</sub>O<sub>2</sub> 5.09 3.72 1.11 0.12 17.18 17.02 17.97 FeO 3.53 4.74 4.405.14 4.11 17.14 0.54 0.65 0.64 MnO 0.57 0.52 0.48 0.15 \_ 0.51 0.49 0.15 0.10 MgO 0.50 0.16 0.88 0.85 12.28 3.32 2.91 2.73 9.21 8.83 12.65 CaO 3.66 2.85BaO 0.20 0.55 2.53 1.27 1.11 1.09 SrO 1.43 1.20 1.19 1.81 1.79 1.97 \_ \_ ZrO. 0.16 0.29 0.54 0.11 0.18\_ Nb,O, 0.25 0.20 0.45 0.32 0.13 \_ Ta<sub>2</sub>O<sub>5</sub> 0.26 \_ \_ \_ \_  $Sc_2O_3$ 0.30 0.19 0.26 0.28 0.14 \_ \_ \_ \_ Y,0, 0.04 La<sub>o</sub>O 14.96 14.45 11.94 12.24 10.24 9.34 10.06 7.84 7.01  $Ce_{2}O_{3}$ 20.92 20.41 17.82 18.30 15.87 12.16 12.98 9.15 9.57 Pr<sub>o</sub>O 1.57 1.44 1.45 1.50 1.12 1.02 1.54 0.76 1.14 Nd<sub>2</sub>O 4.32 4.31 4.13 4.03 3.57 2.82 2.49 1.34 2.05 Sm<sub>2</sub>O 0.11 0.14 0.18 0.09 0.46 0.39 0.51 Eu<sub>2</sub>O<sub>2</sub> 0.19 0.11 0.03 0.23 0.43 0.07 Gd<sub>2</sub>O<sub>2</sub> 0.14 0.38 0.17 \_ 0.22 0.29 0.04 Tb<sub>2</sub>O<sub>2</sub> 0.46 0.10 \_ \_ 0.09 0.16 0.20 0.16 0.32 Dy<sub>2</sub>O<sub>3</sub> 0.12 \_ 0.11 0.04 0.05 0.03 0.08 0.33 Ho<sub>2</sub>O<sub>3</sub> \_ \_ 0.18 0.04 Er,O, 0.07 0.85 \_ \_ \_ 0.09 \_ Yb,O, 0.16 0.06 0.02 0.27 \_ \_ \_ 0.15 Lu<sub>2</sub>O<sub>2</sub> \_ 0.24 1.08 1.14 1.72 1.31 1.70 0.74 0.51 ThO, \_ 0.07 0.01 0.04 0.05 0.28 \_ UO. 0.03 SnO<sub>2</sub> 0.03 \_ \_ \_ \_ V.O. 0.49 0.41 0.19 0.45 0.38 H<sub>2</sub>O\* 1.46 1.46 1.59 1.59 99.98 97.79 94.60 91.97 87.40 98.68 99.36 98.60 99.77 Сумма 8 13 7 Кол-во ан. 8 8 1 1 1 1

Химический состав перрьерита-(Се) (1–5) и алланита-(Се) (6–9) (мас. %)

Расчётные формулы (ан. 1 – на 13 катионов, ан. 6–9 – на 8 катионов)  $1. (Ce_{1.52}La_{1.10}Ca_{0.78}Nd_{0.31}Sr_{0.14}Pr_{0.11}Sm_{0.01}Tb_{0.01}Dy_{0.01}Ho_{0.01}Er_{0.01}Yb_{0.01}Lu_{0.01})\\ 4.03(Fe^{2+}_{0.59}Mg_{0.15}Mn_{0.10}Sc_{0.05}Th_{0.05}Zr_{0.02}Nb_{0.02})\\ -2.03(Fe^{2+}_{0.59}Mg_{0.15}Mn_{0.10}Sc_{0.05}Th_{0.05}Zr_{0.02}Nb_{0.02})\\ -2.03(Fe^{2+}_{0.59}Mg_{0.15}Mn_{0.15}Nn_{0.15}Nn_{0.05}Nb_{0.02}Nb_{0.02}Nb_{0.02})\\ -2.03(Fe^{2+}_{0.05}Mn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0.05}Nn_{0$ 

 $Ba_{0.01})_{0.99}(Ti_{2.67}Fe^{3+}_{0.76}Al_{0.52}V_{0.06})_{4.01}Si_{3.98}O_{22};$ 

 $6.\ Ca_{1.01}(Ce_{0.46}La_{0.35}Nd_{0.10}Pr_{0.04}Er_{0.03}Dy_{0.01}Ho_{0.01})_{1.00}(Fe^{2+}_{0.93}Ti_{0.09})_{1.02}(Al_{1.34}Fe^{3+}_{0.40}Mg_{0.13}Mn_{0.06}Th_{0.02})_{1.94}Si_{3.03}O_{12}(OH);$ 

7.  $Ca_{0.97}(Ce_{0.49}La_{0.38}Nd_{0.09}Pr_{0.06}Sm_{0.01})_{1.02}Fe^{2+}_{1.03}(Al_{1.34}Fe^{3+}_{0.28}Mg_{0.13}Ti_{0.11}Mn_{0.05}Th_{0.01}U_{0.01})_{1.94}Si_{3.04}O_{12}(OH);$ 

 $8.\ Ca_{1.00}(Ce_{0.32}La_{0.27}Ca_{0.24}Nd_{0.05}Pr_{0.03}Eu_{0.01}Sr_{0.06})_{0.98}(Fe^{2+}_{0.71}Fe^{3+}_{0.24}Ti_{0.03})_{0.98}(Al_{1.52}Fe^{3+}_{0.40}Mg_{0.07})_{1.99}Si_{3.05}O_{12}(OH);$ 

9.  $Ca_{1.00}(Ce_{0.33}Ca_{0.28}La_{0.24}Nd_{0.07}Sr_{0.07}Pr_{0.04})_{1.03}(Fe^{2+}_{0.70}Fe^{3+}_{0.23}Ti_{0.04})_{0.97}(Al_{1.50}Fe^{3+}_{0.49}Th_{0.01})_{2.00}Si_{3.00}O_{12}(OH).$ 

Примечание:  $H_0O^* -$ рассчитано по (OH) = 1.00. *Note:*  $H_2O^*$  – recalculated to OH = 1.00.



Рис. 8. Изменение содержаний основных химических элементов в перрьерите-(Се) при увеличении степени его гидратации.

Ф.к. – формульные коэффициенты. Номера соответствуют анализам табл. 5.

Fig. 8. Variation in contents of major chemical elements in perrierite-(Ce) at increasing the degree of its hydration.

 $\Phi$ . $\kappa$ . – formula units. The numbers correspond to analyses in Table 5.



*Рис.* 9. Парагенезисы минералов с перрьеритом-(Се) из кальцит-флогопит-альбитовых прожилков Вишнёвогорского месторождения.

Ank – анкилит-(Ce), All – алланит-(Ce), Pr1 – перрьерит-(Ce), Pr2 – перрьерит-(Ce) гидратированный, Cer – «церфосфорхаттонит», Ca – кальцит, Ilm – ильменит, F1 – флогопит. BSE изображение.

Fig. 9. Assemblages of minerals with perrierite-(Ce) from calcite-phlogopite-albite veinlets of the Vishnevogorsk deposit.

Ank – ankilite-(Ce), All – allanite-(Ce), Pr1 – perrierite-(Ce), Pr2 – perrierite-(Ce) hydrated, Cer – «cerphosforhattonite», Ca – calcite, Ilm – ilmenite, Fl – phlogopite. BSE image.

29

Таблица б

Table 6

Химический состав ильменита (1–3) и ловерингита-(Се)? (4) (мас. %)

| Chemical composition of ilmenite $(1-3)$ and loveringite-(Ce)? (4) (wt. %)                                              |        |        |       |       |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|-------|--|--|
| № ан.                                                                                                                   | 1      | 2      | 3     | 4     |  |  |
| TiO <sub>2</sub>                                                                                                        | 47.63  | 48.21  | 50.05 | 47.79 |  |  |
| FeŐ                                                                                                                     | 44.39  | 43.88  | 32.72 | 30.63 |  |  |
| MnO                                                                                                                     | 4.8    | 5.08   | 14.09 | 9.29  |  |  |
| CaO                                                                                                                     | _      | _      | 0.16  | 2.05  |  |  |
| ZrO <sub>2</sub>                                                                                                        | _      | _      | _     | 0.65  |  |  |
| Nb <sub>2</sub> Õ <sub>5</sub>                                                                                          | 0.56   | -      | 1.79  | 0.63  |  |  |
| La <sub>2</sub> O <sub>3</sub>                                                                                          | 0.59   | 1.15   | _     | 2.18  |  |  |
| Ce <sub>2</sub> O <sub>3</sub>                                                                                          | —      | -      | _     | 2.41  |  |  |
| Nd <sub>2</sub> O <sub>3</sub>                                                                                          | —      | -      | _     | 0.91  |  |  |
| Eu <sub>2</sub> O <sub>3</sub>                                                                                          | 0.30   | -      | —     | —     |  |  |
| $Gd_2O_3$                                                                                                               | —      | -      | -     | 0.51  |  |  |
| $Tb_2O_3$                                                                                                               | -      | 1.42   | _     | 0.60  |  |  |
| $Dy_2O_3$                                                                                                               | 1.56   | 1.02   | _     | 0.57  |  |  |
| Ho <sub>2</sub> O <sub>3</sub>                                                                                          | _      | -      | _     | 0.46  |  |  |
| Er <sub>2</sub> O <sub>3</sub>                                                                                          | 0.44   | -      | _     | -     |  |  |
| WO <sub>3</sub>                                                                                                         | —      | -      | 0.74  | 0.69  |  |  |
| SiO <sub>2</sub>                                                                                                        | 0.13   | -      | -     | 0.48  |  |  |
| Сумма                                                                                                                   | 100.40 | 100.76 | 99.55 | 99.85 |  |  |
| Расчётные формулы (1-3 на 2 катиона, 4 – на 22 катиона)                                                                 |        |        |       |       |  |  |
| $1. (Fe^{2+}_{0.82}Mn_{0.10}Fe^{3+}_{0.05}La_{0.02}Dy_{0.01})_{1.00}(Ti_{0.92}Fe^{3+}_{0.07}Nb_{0.01})_{1.00}O_{3.00};$ |        |        |       |       |  |  |
| 2. $(Fe^{2+}_{0.81}Mn_{0.11}Fe^{3+}_{0.05}La_{0.01}Tb_{0.01}Dy_{0.01})_{1.00}(Ti_{0.93}Fe^{3+}_{0.07})_{1.00}O_{3.00};$ |        |        |       |       |  |  |
| 3. $(Fe^{2+}_{0.70}Mn_{0.31})_{1.01}(Ti_{0.96}Nb_{0.02}W_{0.01})_{0.99}O_{3.00};$                                       |        |        |       |       |  |  |

 $4. (Ca_{0.64}Ce_{0.26}La_{0.23}Fe_{0.22}Si_{0.14}Nd_{0.09}Zr_{0.09}Nb_{0.09}Tb_{0.06}Gd_{0.05}Dy_{0.05}W_{0.05}Ho_{0.04})_{2.00}(Ti_{10.46}Fe_{7.25}Mn_{2.29})_{20.00}O_{37}.$ 

гидротермально перекристаллизованного при температуре 680 °С и давлении 2 кбар, была получена дифрактограмма перрьерита-(Се) (см. табл. 4, ан. 3) (Ito, 1967). Первичным диагностическим признаком перрьерита-(Се) может служить оригинальная форма кристаллов, значительно отличающаяся от морфологии чевкинитов Вишнёвых гор (Чесноков, 1961; Попова и др., 1998).

Анкилит-(Се) на данном месторождении ранее был обнаружен С.Н. Никандровым в наиболее поздних минерализованных зияющих трещинах в иной ассоциации совместно с Sr- и Na-карбонатами: доннейитом, ханнешитом, кальциостронцианитом, кальцитом, анкеритом, бурбанкитом, шортитом, троной (Никандров, 1987; 1988). Этот анкилит-(Се) отличается наличием фтора, меньшим содержанием РЗЭ с соотношением Ce<sub>2</sub>O<sub>3</sub>/La<sub>2</sub>O<sub>3</sub> = 1.6 (против 1.1–1.3) (Пеков и др., 1996).

Таким образом, обнаруженная нами ассоциация минералов в Вишнёвых горах отмечена впервые, но, по-видимому, имеет широкое распространение.

## Литература

*Еськова Е.М., Жабин А.Г., Мухитдинов Г.Н.* Минералогия и геохимия редких элементов Вишнёвых гор. М.: Наука, 1964. 320 с.

Никандров С.Н. Новый тип акцессорной редкометалльной минерализации в Вишнёвогорском щелочном комплексе // Геология, минералогия и полезные ископаемые Южного Урала: Тез. докл. Школы-семинара молодых геологов. Свердловск: УНЦ АН СССР, 1987. С. 40–49.

*Никандров С.Н.* Поздняя акцессорная минерализация в Вишнёвогорском щёлочном комплексе // Новые данные по минералогии Урала. Свердловск: УрО АН СССР. 1988. С. 60–70.

Павленко А.С., Орлова Л.П., Ахманова М.В. Церфосфорхаттонит – минерал группы монацита // Тр. Минерал. музея АН СССР, 1965. Вып. 16. С. 166–174.

Пеков И.В., Куликова И.М., Никандров С.Н. О составе редкоземельных карбонатов из гидротермалитов Вишнёвогорского щелочного комплекса // Уральская летняя минералогическая школа–1996. Екатеринбург: УГГГА, 1996. С. 137–141. Попова В.И., Исаков М.Г., Муфтахов В.А. Новые данные о крупных кристаллах чевкинита из Вишнёвых гор // Уральский геологический журнал. 1998. № 6. С. 42–47.

Портнов А. М. Стронциевый перрьерит в северном Прибайкалье // Докл. АН СССР. 1964. Т. 156. № 3. С. 579–581.

*Роненсон Б.М.* Происхождение миаскитов и связь с ними редкометалльного оруденения. М.: Недра, 1966. 173 с.

Семёнов Е.И. Минералогия Ловозёрского щелочного массива. М.: Наука, 1972. 307 С.

*Чесноков Б.В.* Кристаллы чевкинита из Вишнёвых гор на Урале // Зап. ВМО. 1961. Ч. 90. Вып. 3. С. 281–282.

Чуканов Н.В., Бласс Г., Пеков И.В., Белаковский Д.И., Ван К.В., Расцветаева Р.К., Аксёнов С.М. Перрьерит-(La) (La,Ce,Ca)<sub>4</sub>Fe<sup>2+</sup>(Ti,Fe)<sub>4</sub>(Si<sub>2</sub>O<sub>7</sub>)O<sub>8</sub> – новый вид из вулканического района Айфель, Германия // Зап. РМО. 2011. № 6. С. 34–44.

*Bonatti S., Gottardi G.* Perrierite, nuovo minerale ritrovato nella sabbia di Nettuno (Roma) // Atti (Rend.) Accad. Naz. Lincei. 1950. Ser. 8. V. 9. P. 361–368.

*Chukanov N.V.* Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH. Dordrecht – Heidelberg – New York – London, 2014. 1726 p.

*Ito J.* A study of chevkinite and perrierite // Amer. Min. 1967. № 52. P. 1094–1104.

*Lima-de-Faria J.* Heat treatment of chevkinite and perrierite // Mineral. Mag. 1962. V. 33. P. 42–47.

Pasero M., Ferraris R., Kampf A.R., Pekov I.V., Rakovan J., White T.J. Nomenclature of the apatite supergroup minerals // Eur. J. Mineral. 2010.  $N_{22}$ . P. 163–179.

*Raade G.* Contribution to the Mineralogy of Norway No 43. Perrierite from the Sogndal anorthosite, South Norway // Norsk Geologisk Tidsskr. 1970. V. 50. P. 241–243.

Segalstad T. V., Larsen A.O. Chevkinite and perrierite from the Oslo region, Norway // Amer. Min. 1978. V. 63. P. 499–505.

*Takubo J., Nishimura S.* On tscheffkinite from Kobe-mura, Kyoto Prefecture, Japan // Mem. Coll. Sci., Univ. of Kyoto. 1953. Ser. B. V. 20. P. 323–328.

Поступила в редакцию 15 сентября 2016 г.