УДК 549.642.11; 552.13

АЛЮМОЭНСТАТИТ ИЗ КАРАБАШСКОГО И НЯШЕВСКОГО МАССИВОВ (ЮЖНЫЙ УРАЛ)

Е.В. Медведева¹, Н.М.Мурдасова¹, А.Б. Немов¹, В.А. Котляров²

¹Ильменский государственный заповедник, г. Muacc; winned_by_dream@inbox.ru ² Институт минералогии УрО РАН, г. Muacc

ALUMOENSTATITE FROM KARABASH AND NYASHEVO MASSIFS (SOUTH URAL)

E.V. Medvedeva¹, N.M. Murdasova¹, A.B. Nemov¹, V.A. Kotlyarov²

¹Ilmeny State Reserve, Miass; winned_by_dream@inbox.ru ²Institute of Mineralogy UB RAS, Miass

В породах Карабашского и Няшевского массивов на Южном Урале обнаружен алюмоэнстатит. Особенности его химического состава (повышенные концентрации алюминия) в совокупности с текстурно-структурными особенностями пород позволяют предположить диапазон условий образований этого минерала. Максимально высокие содержания Al_2O_3 15.6– 20.0 мас. % наряду с повышенными концентрациями железа и заметными количествами натрия в алюмоэнстатите Карабашского массива могут отражать условия верхней мантии – нижней коры. Высокие концентрации Al_2O_3 15.6–16.2 мас. % и кальция в алюмоэнстатите из милонитизированных пород основного состава, образованных за счёт серпентинитов Няшевского массива, фиксируют условия тектоно-метаморфических преобразований в средней – нижней коре.

Илл. 3. Табл. 2. Библ. 14.

Ключевые слова: алюмоэнстатит, мафит-ультрамафитовые массивы, Южный Урал.

Aluminoenstatite was found in the rocks of the Karabash and Nyashevo massifs (South Urals). The features of its chemical composition (high Al contents), along with textural-structural peculiarities of the rocks, indicate a range of its formation conditions. The high Al_2O_3 contents (15.3–20.0 wt. %), elevated Fe contents, and noticeable Na contents in aluminoenstatite from mafic-ultramafic Karabash massif may reflect the upper mantle–lower crust formation conditions. The high Al_2O_3 (15.6–16.2 wt. %) and Ca contents in aluminoenstatite from mafic mylonites formed after from serpentenites of the Nyashevo massif are evidence of tectonometamorphic transformation conditions in the middle–lower crust.

Figures 3. Tables 2. References 14.

Key words: aluminoenstatite, mafic-ultramafic massifs, South Urals.

Введение

Алюмоэнстатит – минерал группы ортопироксенов – характеризуется повышенными содержаниями Al₂O₃ 15–20 мас. %. В справочнике «Минералы» (1981) отмечено, что алюмоэнстатиты, содержащие более 2 мас. % Al₂O₃, встречаются редко. Однако алюмоэнстатиты с содержанием до 12 мас. % описаны в высокометаморфизованных породах Станового хребта (в пироп-бронзит-силлиманитовых сланцах), до 8 мас. % – в лунных метеоритах и глубинных породах Луны (Назаров и др., 2011), до 6.7 мас. % – во включениях в клинопироксене (авгите) из базальтов вулкана Стена Карымского вулканического центра (Гриб, 2007). Нами обнаружены алюмоэнстатиты с содержанием Al₂O₃ 15.3– 20 мас. % в серпентинитах Карабашского массива (Мурдасова, Вализер, 2015) и 15.6–16.2 мас. % – в метасоматитах основного состава Няшевского массива (Медведева и др., 2015). Находка алюмоэнстатита в этих породах позволяет расширить представление об эволюции массивов ультраосновных пород и условиях образования минерала.

Методы исследования

Минеральный состав пород определён в тяжёлой фракции протолочки крупнообъёмной пробы и площадным методом в шлифах (микроскоп Nicon Eclipce E200-POL). Химический состав минералов определён на растровом электронном микроскопе PЭММА-202M с энергодисперсионной приставкой LZ-5 Link Sistems с Si-Li детектором (ИМин УрО РАН, аналитик В.А. Котляров). Стандарты использованы с шашки «Astimex scientific limited» MINM 25-53 Mineral Mount Serial № 01–44 при разрешении детектора 160 эВ, ускоряющем напряжении 20–30 кВ, токе 3 × 10⁻³ А, диаметр пучка 1– 2 мкм. Коррекция данных производилась с использованием программы «Magellanes».

Геологическое положение Няшевского и Карабашского массивов

Няшевский мафит-ультрамафитовый массив расположен в средней части Ильменских гор (рис. 1а) и образует тело овальной формы (1.6 × 0.8 км), сложенное серпентинитами и обрамлённое с запада серповидным телом амфиболитов; вмещающие массив породы – милонитизированные гнейсы (см. рис. 1б). Внутреннее строение массива осложнено тектоническими нарушениями с широким развитием тел пегматоидного облика, в том числе и гранитных пегматитов (Варлаков и др., 1998). Алюмоэнстатит обнаружен здесь в северо-западной части массива (в копи № 214) в метасоматитах основного состава.

Карабашский массив расположен на участке выклинивания северной части Магнитогорского мегаантиклинория между Башкирским поднятием с запада и Ильмено-Вишнёвогорской сдвиговой зоной с востока (см. рис. 1а). Он имеет сильно вытянутую в меридиональном направлении форму длиной 6–7 км (см. рис. 1в) при максимальной ширине в 1.5 км (в районе г. Карабаш). Массив залега-

Рис. 1. Схематическая геологическая карта средней части Ильменогорского компекса и геологическое положение Карабашского (а) и Няшевского (б) массивов (*no*: Бажин и др., 2010; Кораблёв, Крайнев, 2007).

 селянкинская серия амфиболито-гнейсово-плагиомигматитовая (Ar-Pt₁); 2 – массивы миаскитов (O₂);
 милониты гранитоидного и сиенитового состава (P₂-T₁(?); 4 – милониты Кыштымского сдвига-надвига;
 еланчиковская толща (тектониты гранитоидного состава); 6 – саитовская серия (метатерригенная); 7 – зеленосланцевые осадочно-вулканогенные комплексы Западно-Магнитогорской и Арамильско-Сухтелинской зон;
 8 – Увильдинский монцонит-гранитный комплекс (Pz₃);
 9 – гнейсовидные граниты Кисегачского комплекса (P₂),
 10 – амфиболиты (метагабброиды); 11 – метагипербазиты и точки опробования; 12 – родингитовые жилы.

Fig. 1. Schematic geological maps of the middle part Ilmenysky complex and geological setting Karabashsky (a) and Nyashevsky (b) massifs (*after* Bazhin et al., 2010; Korablev, Kraynev; 2007).

1 – Selyankino Group: Archean to Early Proterozoic amphibolite-gneiss-plagiomigmatite rocks; 2 – Middle Ordovician miaskite massifs; 3 – Middle Permian-Lower Triassic (?) granitic and syenitic blastomylonites; 4 – mylonites of Kyshtym shear thrust; 5 – Elanchik Sequence: granitic tectonites; 6 – Saitovo Sequence: metaterrigenous rocks; 7 – greenschist volcanosedimentary complexes of the West Magnitogorsk and Aramil-Sukhteli zones; 8 – Late Paleozoic Uvil'dy monzogranitic complex; 9 – Middle Permian gneissic granites of the Kisegach complex; 10 – amphibolites (metagabbroic rocks); 11 – metaultramafic rocks and sampling places; 12 – rodingite veins. ет среди вулканогенных и вулканогенно-осадочных пород и сложен серпентинизированными гарцбургитами, дунитами, в меньшей степени – лерцолитами (Спиридонов и др., 1997) и рассечён многочисленными дайками габброидов, гранитоидов, жильными телами хлорит-карбонатных пород. По осевой части массива на протяжении более 2 км прослеживается серия прерывистых тел родингитов гранат-диопсид-хлоритового состава. Единичные зёрна алюмоэнстатита были обнаружены в тяжёлой фракции протолочки крупнообъёмной пробы (№ К2143) аподунитового серпентинита.

Кристалломорфологические особенности цирконов из гипербазитов Няшевского и Карабашского массивов и датировки их возраста указывают на сходство процессов формирования и развития этих массивов (Краснобаев и др., 2016а; Краснобаев и др., 2016б). Наиболее древние датировки (1704– 1929 млн лет) определены в кристаллах цирконов, частично сохранивших зональное и секториальное строение. Палеозойскую историю сохранили индивиды цирконов, испытавшие мигматизацию, дробление, растворение и обрастание (440–550 млн лет, включая интервал 275–308 млн лет для Няшевского массива).

Алюмоэнстатит и сосуществующие минералы

Энстатиты с повышенным содержанием Al₂O₃ обнаружены в самых различных обстановках: в хондритах и лунных метеоритах, схожих с веществом мантийного рестита Земли, в метаморфических породах высоких давлений, в вулканитах островодужной формации. Обнаруженные нами в ультрамафитах Карабашского и метасоматитах Няшевского массивов алюмоэнстатиты позволяют расширить представления об условиях образования этого минерала.

Магнезиальный алюмоэнстатит с содержанием $Al_2O_3 > 4$ мас. % был описан ранее в породах Ильменогорского комплекса как реликтовый алюмобронзит из метакоматиитов (Баженов и др., 1993) в преобразованных мантийных породах. Алюмоэнстатиты из серпентинитов Карабашского массива имеют максимально высокие концентрации Al_2O_3 (до 20 мас. %). В породах Няшевского массива алюмоэнстатит присутствует в метасоматитах основного состава (копь № 214; N55° 08′ 30″, Е60°14′ 02″), образовавшихся в зонах милонитизации серпентинитового массива, а высокомагнезиальный энстатит – в кварц-полевошпатовых пегматоидных жилах среди милонитизированных серпентинитов (копь № 249; N55° 08′ 28″, Е60° 14′ 50″). Содержание глинозёма в пироксене может отражать температурные условия образования породы (Добрецов и др., 1971), однако РТ-условия породы зависят от совокупности факторов, которые фиксируются в поведении групп элементов.

Минеральный состав метасоматитов Няшевского массива

Метасоматиты Няшевского массива образовались по серпентинитам, представляют собой милонитизированные породы основного состава и сложены на 30 % объёма порфирокластами и на 70 % матриксом. Порфирокласты амфибола и пироксена имеют слегка уплощённую форму, а калиевого полевого шпата более изометричны. Матрикс образован тонкочешуйчатым агрегатом биотита, мелкими зёрнами амфибола или пироксена, перекристаллизованными индивидами калиевого полевого шпата (реже – плагиоклаза), которые образуют скопления и визуально выглядят как удлинённые лейкократовые индивиды. Минеральный состав метасоматитов (% об.): калиевый полевой шпат 40-60, биотит 10-15, амфибол 5-10, плагиоклаз 5-10, пироксен 2-3, кварц 2-3, акцессорные минералы 3-4 %.

Порфирокласты калиевого полевого шпата (состава Or 84, Ab 15, An 1) часто имеют сигмоидную форму (рис. 2) с внутренним строением «ядро-оболочка», характерной для милонитов амфиболитовой фации метаморфизма. В составе порфирокласт ортоклаза зафиксированы максимальные количества ВаО 3.19 мас. % и Na₂O 2.96 мас. % (табл. 1, ан. 10), а в индивидах ортоклаза матрикса концентрации этих элементов ниже возможности определения. В пегматоидных жилах среди серпентинитов (копь № 249) ортоклаз состава Or 90, Ab 10, An 0, слагающий центральную часть жилы, содержит малые количества BaO 0.34 мас. % и значительные Na₂O 1.1 мас. % (см. табл. 1, ан. 15). При процессах милонитизации и рекристаллизации в калиевых полевых шпатах метасоматитов отмечено увеличение содержаний К и Аl при снижении Ва и Na, а в ортоклазах пегматоидных жил – увеличение Na.

Плагиоклаз слагает пертитовые вростки или небольшие зёрна (0.5–1 мм) в матриксе. Состав плагиоклаза соответствует олигоклазу An 15–21 (см. табл. 1, ан. 5, 11). Крупные идиоморфные зёрна олигоклаза (An 18–25) с тонкими полисинте-

Рис. 2. Сигмоидный порфирокласт КПШ в биотит-полевошпатовом матриксе милонитизированных пород основного состава Няшевского массива.

Шлиф: а – без анализатора, б – с анализатором.

Fig. 2. Sigmoid K-feldspar porphyroclast in biotite-feldspar matrix of mafic mylonites from the Nyashevo massif. Thin section: plain polarized light (a), crossed polarized light (6).

тическими двойниками встречены лишь в пегматоидных жилах. Олигоклаз характеризуется однородным составом, однако в некоторых случаях есть альбитовая оторочка или антипертитовые срастания в пегматоидных жилах.

Сигмоидные порфирокласты амфибола содержат игольчатые вростки апатита и титанита. Реже амфибол образует индивиды скелетовидной структуры и изометричные зёрна в матриксе породы. Индивиды магнезиогастингсита (см. табл. 1, ан. 2, 3) обнаружены в виде включений среди крупных зёрен диопсида. Иногда индивиды амфибола обрамлены тонкоигольчатым агрегатом актинолита или частично замещены флогопитом.

Флогопит (см. табл. 1, ан. 4, 6, 9) является одним из основных минералов матрикса, образуя чешуйки различного размера. Флогопитом замещаются амфибол и пироксен. По агрегатам флогопита иногда развит тонкозернистый агрегат магнетита, а при выветривании – вермикулит.

Акцессорные минералы метасоматитов: апатит, образующий редкие бочонковидные кристаллы или игольчатые кристаллы от 0.1 мм до 0.5 см; титанит часто наблюдается в ассоциации или в срастании с зёрнами амфибола и биотита, образуя крупные удлинённые клиновидные или таблитчатые зёрна состава $(Ca_{0.97}Y_{0.03})(Ti_{0.91}Fe_{0.05}Al_{0.03}Nb_{0.01})(Si_{0.96}Al_{0.04})O_5;$ широко распространены спорадические скопления изометричных зёрен монацита-*(Ce)* (Ce_{0.40}La_{0.19}Ca_{0.24}Nd_{0.11}Pr_{0.06}Sr_{0.04})_{1.06}(P_{0.92}Si_{0.02})_{0.94}O₄ величиной 10–200 мкм. Реже встречаются мелкие зёрна магнетита и ильменита сложной формы.

Пироксены в этих породах представлены диопсидом и энстатитом. Диопсид состава Di_{91.0-95.5} Аеg_{4.5-9.0} (см. табл. 1, ан. 8) слагает порфирокласты, частично замещённые амфиболами и флогопитом или образует порфиробласты, пронизанные включениями игольчатого апатита. Соотношение CaO : MgO в диопсиде 1.5–1.8 (по данным ряда анализов, мас. %), а количество Na составляет 0.4–0.09 к. ф.

Алюмоэнстатит (см. табл. 1, ан. 1, 7) образует изометричные мелкие зёрна (0.16–0.30 мм) в срастании с магнезиогастинситом (рис. 3а) или образуют изометричные зёрна (до 0.3 мм) среди деформированных индивидов амфибола и слюды (см. рис. 3б). Алюмоэнстатит не содержит Ті и Сг (в отличие от алюмоэнстатитов метеоритов и щелочных базальтов островных дуг). Соотношения с сосуществующими минералами позволяют предположить совместное образование алюмоэнстатита с магнезиогастингситом и барийсодержащим калиевым полевым шпатом (см. табл.1, ан. 5, 10).

Высокомагнезиальный энстатит (см. табл. 1, ан. 12) образовался позднее среди кварц-полевошпатового агрегата пегматоидных жил в серпентинитах Няшевского массива.

Минералы серпентинизированных дунитов Карабашского массива

Серпентинизированные дуниты Карабашского массива представляют собой плотные, массивные породы тёмно-зелёного цвета. Минеральный состав (% об.): антигорит 85, оливин 5–10, пироксен 2–5, хлорит 2–4 и карбонаты 2 % (магнезит и доломит). Акцессорные минералы: гранат, рутил с включениями в нём амфиболов и флогопита, плагиоклаз, кианит, мусковит, магнетит, хромшпине-

nuya I	Table 1				16	Pl	53.17	0.00	22.88	0.05	0.00	0.06	3.84	9.24	0.42	0.00	0.00	99.66										1 C								расчёт.
Ta6	. 7		ила		15	Kfs	64.5 (0.00	18.48	0.07	0.00	0.00	0.10	1.10	15.19	0.34	0.00	39.78									IOB	тветстви								3. H ₂ O [*] – 1
			оидная ж	249	14	Phl	37.89	3.76	13.89	19.07	0.32	14.83	0.38	0.00	6.46	0.00	4.18	00.78 5						+ Z). (OH	твии с	ормулой	(n) катион	CHE B COO	рмулой							лагиокла: calculated
		f	Пегмат		13	Mu	46.24	0.40	36.03	0.52	0.00	1.56	0.04	0.28	10.48	0.00	4.84	100.39 1				На		ионов (Т	3 COOTBETC	ической ф	М) 7 иги (Привед 	еской фо			dOn	GUI		1	IИТ, РІ — п А. Н. О* is
ассива		ky massi			12	En	59.49	0.00	1.17	0.10	0.00	38.51	0.54	0.00	0.00	0.00	0.00	99.81			- 1 V	ia 4 katho		на 13 кат	иведены 1	AMM XO ICICIC.	Ha 8 (Ph]	О и (О	лимихопп.			га 5 катио			,	l – флого dagioclas
CKOLO MS		Nyashevs			11	Pl	63.68	0.00	22.12	0.33	0.00	0.00	4.19	8.72	0.33	0.00	0.00	99.37			Destrict	Pacter H		Расчёт	и О пр	криста	Расчёт	(T + M)	криста			Daruër u				сковит, Ph mite_D1_
д Няшев		e rocks N			10	Kfs	62.95	0.00	19.66	0.01	0.00	0.00	0.00	2.96	10.89	3.19	0.00	99.66	(к.ф.)					$_{2}(OH)_{2.00}$			1.36		80	0						, Mu – myo Mu – bhlogo
из поро	(s from th		214-8	6	Phl	38.31	2.39	16.3	13.15	0.07	16.77	0.00	0.00	9.18	0.00	3.56	99.73	инералов			10	.74	$\overline{M_{2.03}}_{\Sigma 8.00}O_2$			0 ¹⁰ (OH)		O10(OH)						:	BOЙ ШПАТ, scovite D1
нералов	4	mineral	TaBa		8	Di	51.32	0.28	3.12	9.78	0.15	11.95	22.11	1.21	0.00	0.00	0.00	99.92	opmyлы м			0,00 C	C 00:77,60:0	$\Sigma_{5.00}(Si_{5.97}A$	$5.00(Si_{6.00}$		$_{.24}\mathrm{Ti}_{0.08})_{\Sigma4.0}$	9	$1_{1.11}$	0.1.7 (20.0 2.1					:	звый поле Ми – ши
. %) ми	x	(o) of the	вного сос		7	En	49.88	0.00	15.59	0.26	0.05	32.7	1.09	0.16	0.00	0.00	0.00	99.73	ческие ф) _{6.17}	$)_{52.00}O_{5.98}$	(Si, a, Al	16.1 \ 00.1	$(Ti_{0.13}AI_{0.05})$	$^{3}_{0.78} \mathrm{Ti}_{0.11})_{\Sigma^{3}}$		00(Si _{2.68} Al ₁	010 01 0	4.00 010 00 10 00 10 00 00 00 00 00 00 00							fs – калие r feldsnar
tab (mac	<i>,</i>	on (wt. %	иты осно		9	Ρl	63.35	0.00	21.98	0.00	0.00	0.00	3.38	9.97	0.24	0.00	0.00	99.92	идипмЄ	Al _{0.16}) _{52.00} C	Si _{1.68} Al _{0.32}	³ . Ti _{0.01}) ⁵¹	17.10.0 11.0	$[n_{0.06}Fe^{+3}_{0.77}]$	${}_{\rm s}{\rm Mn}_{0.08}{ m Fe}^+$		$\operatorname{H}_{01}^{(01)}\operatorname{H}_{0,01}$	$AI_{1.19}\Sigma_{4.00}$	$Fe^{+3.02} Fe^{+3.01} Fe^{-98}$	54.04O8.08				$24.00O_{8.02}$		ингсит, К fe _ потае ¹
ский сос		ompositio	етасомат		5	Kfs	65.09	0.00	18.47	0.41	0.00	0.00	0.00	1.05	14.10	0.66	0.00	99.78		$S_{1.00}(Si_{1.84})$	$\overline{\mathrm{AI}}_{0.30})_{\Sigma 1.00}($	$Al_{0.07}Fe^{+3}$	$O_{6.02}$	2.24Mg1.75M	$^{+2}_{-2.30}Mg_{1.73}$		${\rm Fe}^{+3}$	Σ3.00 ^{(D1} 2.81 ⁴)	10.02/52.00	$i_{3.03}AI_{1.01}$	O_{60} $O_{8.02}$ $O_{8.02}$	$1.00^{1}O_{7.99}$	${}_{6}O_{7.95}$	$i_{2.85}AI_{1.15})_{\Sigma}$	00 ^{08.1}	lst – racπ inœite K⁺
Химичес		emical co	Z	4-2	4	Phl	37.58	1.64	14.81	19.88	0.35	16.83	0.39	0.00	5.02	0.00	5.4	101.90		$g_{0.47}Fe_{0.03})$	20.01Mg0.691	g, Fe ⁺²	$(50, 5)_{51}$ Si _{2.00}	$7)_{\Sigma 2.00}(Fe^{+2})$.14) _{Σ2.00} (Fe		$^{2}_{+3,13} \mathrm{Mn}_{0.02}$	2 0.16 11 0.13	0.03 AL 1.8 L	10.01 $\Sigma_{0.96}(S)$	$(Si_{2.94}AI_{1.})$	$(101)_{\Sigma^2}$	${}_{15}\mathrm{Si}_{2.81})_{\Sigma^{3.9}}$	$(0.01)_{\Sigma 1.00}(S)$	$(80 \text{Al}_{1.20})_{\Sigma_4}$	НСТАТИТ, Н Чеt — baet
~		Che		21	m	Hst	38.46	1.01	10.85	23.67	0.60	7.45	11.13	2.63	2.42	0.00	2.54	100.76		$M_{0.50}M_{0.50}$	(Fe) =	M	$Mg_{0.95}^{2,1.00}$	Ca _{1.83} Na _{0.17}	$(Ca_{1.86}Na_0)$	22(UH) _{1.35}	Mg _{1,79} Fe ⁺	0.64 AI 0.22 FG	(10180.151°C	${}_{4}Fe^{+2}$ ${}_{0.02}Ba$	$(Al_{0.02})_{51.00}$	$(10)_{\Sigma 1.00}$ (Si	$(Al_{1.04}(Al_{1.04}))$	${}_{2}\mathrm{Al}_{0.02}\mathrm{Fe}^{+2}$	$(2)_{\Sigma_{1.00}}(Si_{2.5})$	д, Én – ЭІ netatite I
					7	Hst	38.49	1.10	11.39	23.26	0.44	7.57	11.01	2.62	2.52	0.00	2.54	100.94		⁵ Ca _{0.05}) _{51.6}	³⁵ Ca _{0.04} Na ₆	Na, Mg,	$^{8}Ca_{0.02})_{7.1}$	$(K_{0.50})_{\Sigma^{0.72}}(0)$	$(5K_{0.06})_{\Sigma_{0.71}}$	(10.01) $\Sigma 8.00$	$(a_{0.03})_{\Sigma 0.49}$	Mg _{1.85} re	Van 14 Can	Na _{0.09} Ca _{0.04}	$Na_{0.27}Ba_{0.06}$	${}_{9}K_{0.90}Fe^{+2}$	Na _{0.85} Ca _{0.18}	₅ Ca _{0.20} K _{0.02}	0Ca0.18 K0.(– диопси de En – e
					-	En	53.33	0.00	16.18	1.08	0.00	27.48	1.45	0.00	0.00	0.00	0.00	99.52		(Mg _{0.5}	(Mg _{0.5}	(Ca ₀	$(Mg_{0.5})$	$(Na_{0.62})$	(Na _{0.6:}	$AI_{1.991}$	(K _{0.46}	N 0.86(1	$(\mathbf{K}_{0.60})$	$(K_{0.84}]$	$(\mathrm{K}_{0.65}]$	$(Na_{0.05})$	$(K_{0.01}]$	(Na _{0.7:}	$(Na_{0.8i})$	<i>чание.</i> D1 i – dionsi
			Породы	№ пробы	№ ан.	Минералы	SiO	$\operatorname{TiO}_{2}^{2}$	$Al_2 \bar{O}$	FeO	MnO	MgO	CaO	Na_2O	K ₂ O	BaO	H,0*	Σ			7	8	12	2	ŝ		4 0	ן ע 2	c 1 41	5	10	15	9	11	16	Note D

Медведева Е.В., Мурдасова Н.М., Немов А.Б., Котляров В.А.

52

Puc. 3. Алюмоэнстатит (En) в милонитизированных породах основного состава Няшевского массива. Chl – хлорит, Hst – гастингсит, Kfs – калиевый полевой шпат, Phl флогопит. BSE фото. *Fig. 3.* Alumoenstatite (En) in mafic mylonite rocks of the Nyashevo massif. Chl – chlorite, Hst – hastingsite, Kfs – K-feldspar, Phl – phlogopite. BSE image.

лиды. Из минеральной фракции (- 0.25 + 0.16 мм) были выделены серпентин, амфиболы, пироксены (диопсид и алюмоэнстатит), гранат, рутил, магнетит, слюды.

Алюмоэнстатит с максимально высоким содержанием алюминия имеет заметные концентрации натрия и железа (табл. 2, ан. 1, 2).

Псевдоморфозы серпентина по оливину и пироксену представлены высокомагнезиальными антигоритом и лизардитом, содержащими незначительные примеси Сг. Оливин (форстерит) образует субизометричные зёрна. Диопсид минального состава Wo₃₇En₆₃ характеризуется низким содержанием железа и незначительной примесью Сг и Na (см. табл. 2, ан. 3).

Гранат, обнаруженный в монофракции, характеризуется широкими вариациями состава от пироп-альмандина $\Pr_{30}Alm_{55}Sps_2Grs_{13}$ (см. табл. 2, ан. 5) и спессартин-альмандина $\Pr_{10}Alm_{43}Sps_{43}Grs_{3}$ с низким содержанием кальциевой компоненты (см. табл. 2, ан. 6) до андрадит-гроссуляра $\Pr_{2}Alm_{12}Sps_{1}Grs_{85}$ (см. табл. 2, ан. 7).

Амфиболы – магнезиальный чермакит с повышенным содержанием Ті и Na (см. табл. 2, ан. 9), в магнезиальной роговой обманке уменьшается количество Ті и увеличивается Na (см. табл. 2, ан. 10), тремолит содержит заметные количества Na (см. табл. 2, ан. 11). Чермакит и магнезиальная роговая обманка вместе с флогопитом образуют включения в рутиле, содежащем примеси Cr_2O_3 0.4–1.2 мас. % и V_2O_5 0.5–0.9 мас. %.).

Флогопит содержит высокие концентрации титана (см. табл. 2, ан. 15). Мусковит (см. табл. 2, ан. 16) и кианит (см. табл. 2, ан. 17) образуют срастания.

Обсуждение и выводы

Ряд гипербазитовых массивов Южного Урала относятся к альпинотипным и представляют собой «мантийные тектониты» (Колман, 1979; Варлаков и др., 1998). Тела альпинотипных гипербазитов имеют изометричную или линзовидную форму, породы в них интенсивно серпентинизированы, тектонизированы и метаморфизованы.

Мафит-ультрамафитовые массивы Южного Урала имеют длительную историю формирования от протерозоя до перми: выплавка мантийного рестита (1890 млн лет) – мигматизация пород в условиях нижней коры – процессы частичного плавления в условиях континентального рифтогенеза (440 млн лет) – сдвиговая тектоника пластических деформаций финальных этапов складкообразования (275 млн лет).

Алюмоэнстатит из серпентинитов Карабашского массива имеет повышенные концентрации железа и заметные количества натрия, а алюмоэнстатит из милонитизированных пород основного состава Няшевского массива характеризуется значительной концентрацией кальция. Повышенные концентрации натрия в пироксене отражают количество жадеитового минала и указывают на формирование пород в условиях высоких давлений (Добрецов и др., 1971). Ассоциация мусковит-кианит-гранат позволяет оценить условия высокотемпературной амфиболитовой фации (~700 °C, 7-9 кбар). Разнообразие составов граната отражает полиметаморфические процессы преобразования ультраосновных пород Карабашского массива; вероятно, образование алюмоэнстатита в породах этого массива свя-

нералы 6 ан. 5:02 4	En En En	En En 48.1	Химичес Chemic Di 51.0	жий сосл al compo 01 42.3	rab (mac ⁶ sition (wt. 5 38.9	%) мине <mark>г</mark> . %) оf m Gt б 37.0	ралов из с inerals fra Gt 38.9	серпент om serр 6t 8 40.8	инитов entinites Ts 45.9	Kapa6s s of the Hbl 10 51.4	aunckon Karab: 11 58.7 58.7	0 Macc ash ma Kfs 12 64.0	ива ssif Pl 13 64.4	PI 14 67.7	Phl 15 40.3	7a6) Mu Mu 46.4	пица . [able]. [7] [7] [7] [7] [7] [7] [7] [7] [7] [7]	
	0.29 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25	+6.1 0.23 15.3 0.00 0.36 1.35 0.00 0.00 0.00	0.07 0.40 0.40 0.40 0.05 0.48 0.48 0.00 0.00	$\begin{array}{c} 12.5\\ 0.00\\ 0.00\\ 0.44\\ 0.00\\$	22.1 22.1 0.00 0.77 7.85 4.49 0.00 0.00	2.00 0.01 19.5 19.3 1.17 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c} 10.00\\ 23.0\\ 0.00\\ 13.5\\ 11.5\\ 11.5\\ 10.5\\ 0.00$	2.90 2.90 13.8 0.00 6.15 0.00 11.4 11.4 11.4 0.15 0.15	9.67 9.67 0.00 0.00 17.4 17.4 10.0 0.00 0.24 0.25 0.24	0.00 0.00 0.00 0.00 0.00 0.13 0.13	$\begin{array}{c} 0.4.0\\ 0.000\\ 0.$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.31	40.5 4.73 5.98 5.98 5.98 0.00 0.00 0.00 0.00	40.49 0.49 0.00 0.00 0.00 0.96 0.96 0.00 0.00 0.0	2002 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
W C C a	a _{0.03} Na _{0.1} a _{0.03} Na _{0.1} a _{0.03} Na _{0.1} a _{0.03} Ca _{0.7}	$\frac{99.30}{Mg_{0.87}}$	$\frac{99.48}{00^{(\rm Mh_{0.01}M}}$	$\frac{99.47}{[g_{0,11}Fe_{0,43}Fa_{0,43}Fa_{0,43}F_{1,03}A_{1,0,13}Si_{1,1}]}$	$\begin{array}{c c} \hline \hline 09.91 \\ \hline 0.45 \\ \hline 0.46 \\ 0.46 \\ \hline 0.46 \\ \Sigma_{1.97} \\ 0_6 \\ \hline 0_6 \\ \hline 0_5 \\ 0_7 \\ 0_7 \\ 0_6 \\ \hline \end{array}$	<u>99.76</u> пирически _{0.01} Al _{0.40} Si ₁ . _{0.01} Al _{0.24} Si ₁ .	99.98 τ φορωγπь ⁵⁹ Σ2 ⁰⁶ 75)Σ2 ⁰⁶	<u>99.58</u> и минера. Г	<u>98.55</u> <u>10в (к.ф.)</u> асчёт на	98.32 98.32 14 катис 13 катис	98.53 98.53 bHa.	99.70	99.70	9.66	100.32	95.94	99.20	
<u>ZÜËZKK</u>	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0,01\\ 0,05\\ \end{array} \\ \end{array} \\ \begin{array}{c} a_{0,10}\\ Ma_{0,02}\\ 0,02\\ \end{array} \\ \begin{array}{c} 0,02\\ Ma_{0,12}\\ 0,02\\ \end{array} \\ \begin{array}{c} 0,03\\ 0,06\\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 0,03\\ 0,06\\ 0,06\\ 0,06\\ \end{array} \\ \begin{array}{c} 0,03\\ 0,06\\ 0,06\\ \end{array} \\ \begin{array}{c} 0,03\\ 0,06\\ 0,06\\ 0,06\\ \end{array} \\ \begin{array}{c} 0,03\\ 0,06\\ 0,06\\ 0,06\\ \end{array} \\ \begin{array}{c} 0,03\\ 0,06\\ $	$^{10} = ^{10} \times ^{21} \times ^{21$	1.00 4 (1.66)22.98A1 (1.34)23.00(Fe (1.34)23.00(Fe (784)22.96A1 (1.34)22.96A1 (1.34)22.96A1 (1.34)22.96A1 (1.34)22(Fe (781,46)22(Fe (781,47)22(Fe		${}_{{ m T}_{0,0}}^{{ m s}}{ m Si}_{{ m 200}}^{{ m 200}}{ m O}_{{ m 12}}^{{ m 200}}{ m C}_{{ m 1001}}^{{ m 200}}{ m C}_{{ m 1001}}^{{ m 2000}}{ m C}_{{ m 1000}}^{{ m 2000}}{ m C}_{{ m 1000}}^{{ m 2000}}{ m C}_{{ m 2000}}^{{ m 2000}}{ m C}_{{ m 2$	${ m Si}_{2.96}{ m D}_{2.96}{ m D}_{3}{ m O}_{12}$ ${ m U}_{0.57}{ m D}_{5}{ m (AI}_{1.6}{ m U}_{1.6}{ m AI}_{0.51}{ m D}_{2.2}{ m (AI}_{0.9}{ m D}_{1.2}{ m AI}_{0.9}{ m D}_{2.2}{ m (AI}_{0.9}{ m D}_{1.2}{ m D}_{2.2}{ m (AI}_{0.9}{ m D}_{1.2}{ m AI}_{0.9}{ m D}_{2.2}{ m (AI}_{0.9}{ m D}_{1.2}{ m AI}_{0.9}{ m AI}_{0$	${}_{7}^{3}Si_{6,3}{}_{28}O_{20}O_{$	(0H) ² I	расчёт на расчёт на расчёт на	18 катис 13 кати	онов. Онов (Т	(+ Z). ((ОН) и О) приве	дены в (COOTBET	СТВИИ	1
22 (Bi 33 Ca 55 K Ca 66 (Na 66	a _{0.03} Na _{0.1} 0.18 ^{Na} 0.18 0.2 ^{Ca0.05} Na a _{0.18} K _{0.78} a _{0.18} K _{0.75}	$\sum_{\substack{{(A_{1},A_{2})} > (A_{2}) > ($	$\begin{array}{c} 1_{1.00} \mathrm{Si}_{3.00} \Sigma_{1} \\ 0.05 _{3.00} \Sigma_{24.00} \mathrm{Gs} \\ 0.51 _{3.00} \Sigma_{24.00} \mathrm{Gs} \\ 0.01 \mathrm{Si}_{0.09} \mathrm{MI}_{1.1} \\ 0.01 \mathrm{Si}_{0.09} \mathrm{Si}_{1} \mathrm{Gs} \end{array}$	$^{.00}O_8$ O_8 $O_{53}D_{23.00}(Ti_{0.0})$ O_4	${}_{2}^{\mathrm{sAl}_{0.94}\mathrm{Si}_{2.81}^{\mathrm{s}})}{}_{2}^{\mathrm{sAl}_{0.96}\mathrm{Si}_{3.02}^{\mathrm{s}})}$	$\sum_{\Sigma_4} O_{10} (OH)_1$	1.56		расчёт на расчёт на риведен рассчита	і 5 катис і 8 (Phl) о в соот н на 3 ка	онов. ИЛИ 7 (<u>)</u> Ветстви атиона.	Ии) кат и с крис	ионов (сталлох	<u>(T + M)</u> кимичео). О и (С ской фо	(<u>Н</u>) рмулой		
<i>римечани</i> пит, Pl – <i>ote</i> . Di – d emolite, T	ие. Di - плагио diopside Гs – tsch	- диопсид клаз, Tr – , En – ensi termakite.	, En – энс тремолит tatite, Grt - H_2O^* – is	татит, Grt ,Ts – черм – garnet, H calculated.	 – гранат, І. акит. Н₂О* [b] – hornbl 	Ibl – горн́ – расчёт. ende, Kfs -	блендит, К - K-feldspa	fs – кали r, Ky – ky	евый пол anite, Mu	севой шп 1 – musc	lar, Ky - ovite, O	- киани ⁻ 1 – olivi	r, Mu – ne, Phl	myckof – phlog	зит, Ol – çopite, Pl	- оливи – plagi	н, Ph-	

МИНЕРАЛОГИЯ № 4 2016

54

зано с двумя первыми этапами формирования в условиях мантии или нижней коры.

Алюмоэнстатит из милонитизированных пород основного состава Няшевского массива содержит заметные количества кальция, обусловливающего наличие диопсидового минала. Соотношение минеральных агрегатов и их химический состав позволяет предположить, что алюмоэнстатит из этих пород образовался при формировании сдвиговой зоны на уровне средней-нижней коры под влиянием флюида при привносе и перераспределении вещества, в том числе Al, K, Ca, H₂O, а в дальнейшем и Mg (с образованием высокомагнезиального энстатита в пегматоидных жилах). Концентрация алюминия в энстатите отражает широкий диапазон температур и давлений и не может являться однозначным свидетельством фациальных условий.

Литература

Баженов А.Г., Рассказова А.Д. О находке метакоматиита в Ильменогорском метаморфическом комплексе (Южный Урал) // Ежегодник–1992. Свердловск: ИГГ УрО РАН, 1993. С. 65–68.

Бажин Е.А., Савельев Д.Е., Сначёв В.И. Габбро-гипербазитовые комплексы зоны сочленения Магнитогорской и Тагильской мегазон: строение и условия формирования. Уфа: ДизайнПолиграф-Сервис, 2010. 244 с.

Варлаков А.С., Кузнецов Г.П., Кораблёв Г.Г, Муркин В.П. Гипербазиты Вишнёвогорско-Ильменогорского метаморфического комплекса (Южный Урал). Миасс: ИМин УрО РАН, 1998. 195 с.

Гриб Е.Н. Минералогические особенности оливинсодержащих базальтов Карымского вулканического центра // Вестник КРАУНЦ. Науки о Земле. 2007. № 2. Вып. 10. С. 17–33. Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А. Породообразующие пироксены. М: «Наука», 1971. 454 с.

Колман Р.Г. Офиолиты. М.: Мир, 1979. 262 с.

Кораблёв Г.Г., Крайнев Ю.Д. К вопросу о формационной принадлежности Няшевского массива / Минералогия Урала–2007. Матер. V Всеросс. совещ. (20–25 августа 2007 г.). Миасс-Екатеринбург: УрО РАН, 2007. С. 264–267.

Краснобаев А.А., Вализер П.М., Анфилогов В.Н., Сергеев С.А., Русин А.И., Бушарина С.В., Медведева Е.В. Цирконология гипербазитов Карабашского массива // ДАН. 2016а. Т. 469. № 1. С. 65–71.

Краснобаев А.А., Вализер П.М., Анфилогов В.Н., Медведева Е.В., Бушарина С.В., Мурдасова Н.М. Цирконология серпентинитов Няшевского массива (Южный Урал) // ДАН. 2016б. Т. 471. № 6. С. 703–707.

Медведева Е.В., Немов А.Б., Котляров В.А. Метасоматиты основного и среднего состава из Няшевского серпентинитового массива (Ильменские горы, Южный Урал) // Литосфера. 2015. № 6. С. 53–68.

Мурдасова Н.М., Вализер П.М. Минералогия ультрамафитов Карабашского массива // Вестник Института геологии Коми НЦ. 2015. № 3. С. 3–8.

Назаров М.А., Аранович Л.Я., Демидова С.И., Нтафлос Т., Брадштеттер Ф. Алюмоэнстатиты лунных метеоритов и глубинные породы Луны // Петрология. 2011. Т. 19. № 1. С. 14–26.

Минералы: Справочник. Т. 3. Вып. 2. М.: Наука, 1981. 613 с.

Спиридонов Э.М., Плетнёв П.А., Перелыгина Е.В., Рапопорт М.С. Геология и минералогия месторождения медистого золота Золотая гора (Карабашское), Средний Урал (о проблеме «золотородингитовой» формации). М.: МГУ, 1997. 192 с.

Поступила в редакцию 1 декабря 2016 г.