УДК 549.62 (470.56)

КЕНИЯИТ И МАГАДИИТ НА ЮЖНОМ УРАЛЕ

М.В. Штенберг, В.А. Попов, С.М. Лебедева, Е.Д. Зенович, Н.А. Божко Институт минералогии УрО РАН, г. Muacc; shtenberg@mineralogy.ru

KENYAITE AND MAGADIITE IN THE SOUTHERN URALS

M.V. Shtenberg, V.A. Popov, S.M. Lebedeva, E.D. Zenovich, N.A. Bozhko Institute of Mineralogy UB RAS, Miass; shtenberg@mineralogy.ru

В Адамовском районе Оренбургской области в отвалах разведочных шурфов на проявлении «кахолонга» Речное любителями минералов среди разрушенных чёрных сланцев обнаружены плотные белые конкреции, по данным ИК- и КР-спектров и рентгенограмм определённые как кенияит $Na_2Si_{22}O_{41}(OH)_8 \cdot 6H_2O$, содержащий редкие мелкие скопления магадиита $NaSi_2O_{12}(OH)_2 \cdot H_2O$. Это первая находка кенияита и магадиита в России.

Илл. 9. Табл. 3. Библ. 12.

Ключевые слова: кенияит, магадиит, Южный Урал.

White dense kenyaite $(Na_2Si_{22}O_{41}(OH)_8 \cdot 6H_2O)$ nodules were found by enthusiasts in dumps of exploration mines of the Rechnoe cacholong occurrence in the Adamovsky district of the Orenburg region. The nodules occurred among eroded black shales and contained small aggregates of magadiite $NaSi_7O_{13}(OH)_3 \cdot H_2O$. Apparently, this is the first finding of kenyaite and magadiite in Russia.

Figures 9. Tables 3. References 12.

Keywords: kenyaite, magadiite, southern Urals.

Введение

Летом 2016 года один из авторов (Н.А. Божко) доставил в Институт минералогии УрО РАН образец белого камня из своей коллекции с целью диагностики минерала. Позднее от него же получена коллекция из образцов тонкозернистого кварца, халцедона и плотных белых конкреций, собранных в отвалах шурфов на проявлении «кахолонга» (рис. 1) в Адамовском районе Оренбургской области между посёлками Энбекши и Октябрьский. Часть образцов представлена плотным белым минеральным агрегатом, обладающим «эффектом опоки» (прилипания языка к образцу) вследствие микропористости и хорошей смачиваемости.

В районе проявления «кахолонга» развиты осадочные породы карбонового возраста: известняки, песчаники, алевролиты, чёрные (углеродистые) сланцы, прорванные различными субвулканическими дайками. Некоторые толщи называют чёрносланцевыми. Минерализация в осадочных и вулканогенных толщах связана с явлениями метаморфизма (регионального и локального метасоматоза). Часть метасоматических преобразований выражена формированием кремней и халцедоновых конкреций, среди которых встречаются оригинальные конкреции белого цвета. Результаты наших исследований показали, что они представлены кенияитом $Na_2Si_{22}O_{41}(OH)_8 \cdot 6H_2O$ и магадиитом $NaSi_7O_{13}(OH)_3 \cdot H_2O$. Среди любителей камня такие конкреции в этом районе назывались «кахолонгом».

Первые данные о находке в отложениях солёного озера Магади (Кения) новых минералов кенияита и магадиита были опубликованы в 1967 году [3]. В этой работе отмечалось, что кенияит образует мелкие конкреции в чёрном слое с магадиитом, и часть конкреций имеет кремневое ядро. Позднее

Puc. 1. Белые конкреции кенияита в отвалах шурфа. *Fig. 1.* White kenyaite nodules in dumps of exploration mines.

магадиит обнаружен в изменённых вулканических породах в округе Тринити, штат Калифорния, США [4]. Сравнение параметров кристаллической решётки и состава магадиита из озера Магади и из вулканических пород в Калифорнии проведено в 1968 году [9].

Кроме того, в работе [3] приводится схема преобразования магадиит–кенияит–кварц. Обнаружено, что при термической обработке до 100 °С под давлением магадиит и кенияит переходят в кварц. При нормальном давлении и температуре 700 °С эти минералы преобразуются в смесь тридимита и кварца. Позднее данная схема преобразования кенияита и магадиита в кварц нашла подтверждение в полевых условиях [5]. Магадиит и кенияит были также получены в лабораторных условиях [1, 8], причём магадиит синтезировали задолго до открытия его в природе [10].

Методы исследования

Для детального исследования предоставленных проб был использован комплекс физических и химических методов в Институте минералогии УрО РАН. Рентгенофазовый анализ проб выполнен на дифрактометре Shimadzu XRD-6000 (Cu-анод, графитовый монохроматор), аналитики П.В. Хворов, Е.Д. Зенович.

Инфракрасные спектры получены на ИК Фурье спектрометре Nicolet 6700 Thermo Scientific; параметры съёмки: диапазон 400–4000 см⁻¹, разрешение 4 см⁻¹, количество сканов 32. Препараты подготовлены путём прессования ~ 2 мг навески вещества в таблетки с КВг (530 мг), аналитик М.В. Штенберг. Спектры комбинационного рассеяния (КР) регистрировались на спектрометре Horiba Jobin Yvon HR с He-Ne лазером (632.8 нм, 20 мВт) и микроскопом Olimpus BX41. Спектры получены путём накопления 20 сканов по 10 секунд каждый в 180° геометрии в диапазоне 100–2000 см⁻¹ с участков размером 5 мкм. Регистрация и обработка спектров осуществлялась в программе Labspec v.5, аналитик С.М. Лебедева.

Химический анализ проведён в Южно-Уральском центре коллективного пользования по исследованию минерального сырья (г. Миасс), аналитик Т.В. Семёнова.

Результаты и их обсуждение

Предоставленные на исследование конкреции имеют различную величину (1–20 см), разную форму (от изометричных до удлинённых, уплощённых и сложных), резкие или постепенные (диффузные) контакты с вмещающими чёрными сланцами. Некоторые конкреции мономинеральны, другие – зональны. В зональных конкрециях в переходных зонах встречаются агрегаты, в которых есть признаки сокристаллизации кварца, кенияита и магадиита. Некоторые кенияитовые конкреции по периферии имеют магадиитовые корочки. Минералы конкреций развиты метасоматически по минералам вмещающих сланцев – карбонатам, хлоритам, слюдам, глинистым минералам и углеродистым образованиям.

 $Na_{2}Si_{2}O_{41}(OH)_{8} \cdot 6H_{2}O$ Кенияит образует белые или светло-серые плотные конкреции (рис. 2а). Твёрдость минерала около 4 по шкале Мооса. Показатель светопреломления около 1.48, двупреломление низкое 0.010. В мономинеральных агрегатах в шлифах видны расщеплённые индивиды кенияита, структура агрегата тонкозернистая, однородная (см. рис. 2б). Химический состав пробы определён Т.В. Семёновой (мас. %): SiO, 85.1; Na₂O 3.01; MgO 0.32; CaO 0.43; H₂O⁻ 3.45; п.п.п. 7.12; сумма 99.43. Данные анализа обнаруживают небольшое завышение SiO, по отношению к идеальному составу, что, возможно, связано с примесью кварца.

Данные рентгенофазового анализа, с которого начались наши исследования, позволили установить принадлежность минерала пробы К2 к кенияиту (табл. 1). Небольшие отклонения параметров полученных рефлексов от литературных данных, возможно, связаны с неоднородностью состава.

Рис. 2. Мономинеральная конкреция кенияита (проба К2):

a – общий вид; б – агрегат из расщёпленных индивидов кенияита (шлиф, с анализатором).

Fig. 2. Monomineral kenyaite nodule (sample K2):

a – general view; 6 – aggregate of split kenyaite individuals (thin section, with analyzer).

Таблица 1

Параметры дифрактограммы пробы кенияита

К2 в сравнении с данными [3]

Table 1

XRD pattern of kenyaite (sample K2) in comparison with data [3]

Проба К2		Кенияит [3]		Проба К2		Кенияит [3]	
I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å
81	20.088	100	19.68	5	3.127		
19	9.963	50	9.925	13	2.942	14	2.934
1	7.304			8	2.833	12	2.827
		2	7.775	3	2.733		
2	6.648	5	6.620	1	2.653	3	2.652
2	5.656	7	5.637	1	2.521	3	2.520
9	5.146	12	5.142	2	2.476	3	2.480
15	4.969	35	4.965	2	2.421	5	2.416
16	4.703	28	4.689	4	2.344	7	2.343
14	4.287	5	4.471	3	2.253		
3	4.145			1	2.126		
9	3.961	10	3.945	1	2.078		
4	3.774	5	3.754	1	1.986		
17	3.637	20	3.638	3	1.875	3	1.880
17	3.526	22	3.525	15	1.829		
100	3.436	85	3.425	1	1.66		
60	3.338	45	3.320	2	1.562		
59	3.204	55	3.198				

Дополнительные отражения могут быть связаны с присутствием небольшого количества кварца.

На рисунке 3 представлен инфракрасный спектр кенияита пробы К2 в сравнении с литературными данными. Основные полосы поглощения в области 1000–1200 см⁻¹ и двойной пик в области 800 см⁻¹ являются общими для многих силикатов, в том числе кварца. Характерными для спектра кенияита являются небольшие полосы поглощения с максимумами 544, 574, 618, 660 и 693 см⁻¹, относящиеся к симметричным валентным колебаниям Si–O–Si. Полосы 1630 см⁻¹ и 1672 см⁻¹ связаны с деформационными колебаниями молекулярной воды, линии 3440 см⁻¹ и 3660 см⁻¹ относятся к валентным колебаниям гидроксильных группировок [7].

Спектр КР кенияита представлен на рисунке 4 в сравнении со спектром из работы [7]. Сопоставление спектров КР показало, что по положению полос, зарегистрированных в различных точках исследуемого образца, минерал соответствует кенияиту, подтверждая идентификацию по результатам рентгенофазового анализа. Характеристические полосы КР спектра и их интерпретация приведены в таблице 2. Спектр кенияита характеризуется сильной полосой в области 464 см⁻¹, соответствующей симметричным валентным колебаниям Si-O-Si, группой полос в области 800-1180 см-1, отвечающих за асимметричные валентные колебания Si-O-Si и валентные колебания связей Si-O, а также группой полос от 100 до 400 см⁻¹, которые можно отнести к деформационным колебаниям Si-O и колебаниям М-О. Сильная полоса в КР спектре 464 см⁻¹ также проявляется в некоторых других силикатах с трёхмерной структурой.

Магадиит NaSi₇O₁₃(OH)₃ · H₂O образует включения в кенияитовых агрегатах либо периферические корки на них (рис. 5а). Встречаются также вкрапления магадиита во вмещающих сланцах. Минерал имеет низкую твёрдость (около 2 по шкале Mooca), низкое среднее светопреломление около 1.48 и низкое двупреломление. Белый цвет минерала вызван отражением света от плоскостей

Рис. 3. Инфракрасные спектры пропускания кенияита: 1 – проба К2; 2 – образец с озера Магади, Кения [2]; 3 – синтезированный образец [7].

Fig. 3. Infrared transmission spectra of kenyaite: 1 – sample K2; 2 – sample from Lake Magadi, Kenya [2]; 3 – synthesized sample [7].

Рис. 4. Рамановские спектры кенияита: 1 – проба К2; 2 – синтезированный образец [7].

Fig. 4. Raman spectra of kenyaite: 1 – sample K2; 2 – synthesized sample [7].

Рис. 5. Кенияитовая конкреция с магадиитовой зоной (показана стрелками) по периферии (а). Видна тень текстуры замещённого сланца (б).

Fig. 5. Kenyaite nodule with magadiite rim (shown by arrows) (a) and relics of replaced shale (6).

Таблица 2

3000

Положение (см⁻¹) и интерпретация полос в спектрах кенияита и магадиита (Ю. Урал) *Table 2*

Кенияит		Магадиит		Интерпретация	
ИК	КР	ИК	КР	полос [7]	
		3659			
3645		3566		ν(OH)	
3437		3440			
		1662		<u> 8(НОН)</u>	
1633		1628		0(11011)	
1210		1235			
1180	1180s	1172	1187vw	$V_{as}(SI=0-SI)$	
1098	1061w	1079		(Si ∩=)	
	1049w		1049w	V(SI=0)	
	819w	821	820w		
797					
784		782	789w		
693	690m	706			
660		669	686w		
618	620w	621	632vw		
574		577		$v_{s}(51-0-51)$	
544	549w	545			
	497s		492s		
	464vs		464vs		
455		444	442s		
		413			
	379s		373w		
	348m		336w		
			252vw	δ(Si–O–Si),	
	201vw			δ(O-Si-O)	
			187m	v(Na O)	
	164w		160w	v(INa=O)	
	131w				

<u>Примечание.</u> v_{as} – асимметричные валентные колебания; v_s – симметричные валентные колебания; δ – деформационные колебания, vs – очень сильный, m – средний, w – слабый, vw – очень слабый, s – плечо.

Note. v_{as} – asymmetric stretching vibrations; v_s – symmetric stretching vibrations; δ – bending vibrations, vs – very strong, m – medium, w – weak, vw – very weak, s – shoulder.

Рис. 6. Инфракрасные спектры пропускания магадиита: 1 – проба К1; 2 – образец из региона Канем, Чад [2]; 3 – образец с озера Чад, Кения, данные из базы спектров HR Inorganics (Nicolet Instrument Corporation).

Fig. 6. Infrared transmission spectra of magadiite: 1 - sample K1; 2 - sample from Kanem region, Chad [2]; 3 - sample from Lake Chad, Kenya; data are taken from IR HR Inorganics database (Nicolet Instrument Corporation).

совершенной спайности по одному направлению, указывающей на слоистую структуру. В анатомической картине конкреции иногда видна «тень» исходного замещённого сланца (см. рис. 5б).

4000

3500

ИК-спектры пробы К1 и спектры магадиита из различных источников имеют очень хорошее сходство между собой (рис. 6; см. табл. 2). Спектр магадиита отличается от спектра кенияита бо́льшей степенью разрешённости полос в области 1000-1200 см⁻¹, где явно прослеживаются 3 линии с максимумами 1235 см⁻¹, 1172 и 1080 см⁻¹. Полосы в области 500-600 см⁻¹ значительно более интенсивны. Форма полос в области валентных и деформационных колебаний воды указывает на сложную структуру вхождения молекулярной воды и гидроксильных группировок. Как и в случае с инфракрасными спектрами, рамановские спектры (КР) магадиита и кенияита различаются распределением линий по интенсивности и небольшим смещением максимума (рис. 7).

По результатам рентгеновских исследований, дифрактограмма пробы К1 соответствует магадииту (табл. 3). Отклонения полученных межплоскостных расстояний от данных в литературных источниках незначительные и связаны, возможно, с вариацией химического состава минерала.

Халцедон образует шаровидные агрегаты, центральная часть которых имеет тёмно-серый оттенок, тогда как внешняя – светлый. Твёрдость по шкале Мооса около 7. В некоторых образцах периферическая зона сложена кенияитом (рис. 8). Отличительной особенностью является присутствие в халцедоне моганита, что подтверждают данные колебательной спектроскопии (рис. 9). В КР-спектре чистого халцедона основной полосой является 465 см⁻¹ [6, 11, 12], тогда как для моганита характерны полосы с максимумами 463 см⁻¹ и 501 см⁻¹.

Puc. 7. Рамановский спектр магадиита (проба К1). *Fig.* 7. Raman spectrum of magadiite sample K1.

Таблица 3 Параметры дифрактограммы пробы магадиита К1 в сравнении с данными [3] Table 3

XRD pattern of magadiite (sample K1) in comparison with [3]

Проба К1		Магадиит [3]		Проба К1		Магадиит [3]	
I, %	d, Å	I, %	d, Å	I, %	d, Å	I, %	d, Å
100	15.62	100	15.41	2	2.826	2.5	2.818
9	7.792	9	7.755	2	2.74	3.5	2.721
1	7.28					5	2.642
2	5.651	4	5.612	6	2.593	4.5	2.592
18	5.191	19	5.181	3	2.536	3.5	2.520
8	5.027	16	5.007			2	2.396
1	4.708			3	2.355	4.5	2.352
13	4.472	18	4.464			2.5	2.259
6	4.014	9	4.008			1	2.161
4	3.915	4	3.909	1	2.068	2.5	2.060
3	3.627					4	1.992
5	3.557	12	3.543	2	1.944	1	1.940
23	3.444	80	3.435	1	1.871	1	1.869
7	3.394			2	1.825		
15	3.31	35	3.296	1	1.805	1	1.777
		10	3.200			1	1.737
19	3.151	50	3.146	1	1.671	1	1.667
10	3.113			1	1.637	1.5	1.638
2	3.001	3	2.994	2	1.56	1.5	1.562
3	2.898					2	1.491
4	2.864	3.5	2.864				

Рис. 8. Конкреция халцедона с периферической зоной кенияита.

Fig. 8. Chalcedony nodule with peripheral kenyaite zone.

Fig. 9. Raman spectrum of chalcedony (c) with moganite (m).

Заключение

Изучение проявления «кахолонга» «Речное» в Адамовском районе Оренбургской области необходимо продолжить с выполнением детальных топоминералогических работ, поиском жильных систем с камерами минерального заполнения (что должно быть при выполнении «принципа жил альпийского типа»: метасоматические образования обязательно сопровождаются подобными по минеральному составу жилами заполнения). В отложениях с кенияитом и магадиитом, по литературным данным [5], следует ожидать находок макатита, канемита, троны, термонатрита, гейлюссита и некоторых других минералов.

Необходимо формирование музейных коллекций этих редких минералов – кенияита, магадиита и других. По неофициальным данным, проявление известно уже несколько десятилетий, но диагностика кенияита и магадиита осуществлена только в 2016 году (рентгенограммы кенияита получены независимо в Миассе Е.Д. Зенович и в Москве А.В. Касаткиным). Это новые для России редкие минералы.

Авторы благодарны В.Н. Удачину, Т.В. Семёновой, П.В. Хворову, способствовавшим выполнению исследований.

Работа выполнена при поддержке гранта РФФИ (№ 16-35-60045), а также гранта Президента РФ для государственной поддержки молодых российских учёных (МК-5863.2016.5).

Литература

1. Beneke K., Lagaly G. (1983) Kenyaite-synthesis and properties. *American Mineralogist*, 68, 818–826.

2. Chukanov N.V. (2014) Infrared spectra of mineral species Extended library. Dordrecht: Springer Netherlands: Imprint: Springer, 1726 p.

3. Eugster H.P. (1967) Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. *Science*, 157(3793), 1177–1180.

4. Eugster H.P., Jones B.F., Sheppard R.A. (1967) New hydrous sodium silicates from Kenya, Oregon and California: possible precursors of chert. (abstr.). *Geological Society of American Annual Meeting*, 60.

5. Eugster H.P. (1969) Inorganic bedded cherts from the Magadi area, Kenya. Contribution to Mineralogy and Petrology, 22, 1–31.

6. Götze J., Nasdala L., Kleeberg R., Wenzel M. (1998) Occurrence and distribution of «moganite» in agate/chalcedony: a combined micro-Raman, Rietveld, and cathodoluminescence study. *Contribution to Mineralogy and Petrology*, 133, 96–105.

7. Huang Y., Jiang Z., Schwieger W. (1999) Vibrational spectroscopic studies of layered silicates. *Chemical Materials*, 11, 1210–1217.

8. Lagaly G., Beneke K. Weiss A. (1975) Magadiite and H-magadiite: I. Sodium magadiite and some of its derivatives. *American Mineralogist*, 60, 642–649.

9. McAtee J.L., House R., Eugster H.P. (1968) Magadiite from Trinity county, California. American Mineralogist, 53, 2061–2069.

10. McCulloch L. (1952) A new highly silicious soda–silica compound. Journal of American Chemical Society, 74(10), 2453–2456.

11. Rodgers K.A., Hampton W.A. (2003) Laser Raman identification of silica phases comprising microtextural components of sinters. *Mineralogical Magazine*, 67(1), 1–13.

12. Schmidt P., Bellot-Gurlet L., Slodczyk A., Fröhlich F. (2012) A hitherto unrecognised band in the Raman spectra of silica rocks: Influence of hydroxylated Si–O bonds (silanole) on the Raman moganite band in chalcedony and flint (SiO₂). Physics and Chemistry of Minerals, 39, 455–464.

Поступила в редакцию 16 марта 2017 г.