МИНЕРАЛЫ И МИНЕРАЛЬНЫЕ АССОЦИАЦИИ

УДК 549.62 (470.55)

ДИНГДАОХЕНГИТ-(Се) ИЗ ВИШНЁВЫХ ГОР (ЮЖНЫЙ УРАЛ, РОССИЯ)

А.В. Касаткин¹, В.А. Попов², А.М. Кузнецов³, Ф. Нестола⁴

¹Минералогический музей им. А.Е. Ферсмана, г. Москва, anatoly.kasatkin@gmail.com ²Институт минералогии УрО РАН, г. Миасс ³ул.Октябрьская, 5-337, г. Челябинск ⁴Департамент наук о Земле, Университет Падуи, г. Падуя, Италия

DINGDAOHENGITE-(Ce) FROM VISHNEVYE MOUNTAINS (SOUTHERN URALS, RUSSIA)

A.V. Kasatkin¹, V.A. Popov², A.M. Kuznetsov³, F. Nestola⁴

¹Fersman Mineralogical Museum RAS, Moscow, anatoly, kasatkin@gmail.com ²Institute of Mineralogy UB RAS, Miass ³Oktyabrskaya str., 5-337, Chelyabinsk ⁴Department of Geosciences, University of Padua, Padova, Italy

Дингдаохенгит-(Се) в ассоциации с альбитом, эгирином, ферроферривинчитом, кальцитом, пиритом и молибденитом найден в сиенитовом пегматите зоны № 125 Вишнёвых гор на Южном Урале (вторая находка в России). Кристаллы субизометричные, с гранями пинакоидов $\{100\}$, $\{001\}$, $\{201\}$, $\{20\overline{1}\}$, $\{\overline{3}01\}$, $\{\overline{2}03\}$ и ромбических призм $\{110\}$, $\{111\}$. Параметры моноклинной элементарной ячейки: a = 13.59(3) Å, b = 5.779(6) Å, c = 11.113(18) Å,
$$\begin{split} &\beta = 100.42(19)^{\circ}, \, \textit{V} = 858(3) \text{ Å}^3; \, \text{эмпирическая формула} \, (\text{Ce}_{1.77}\text{La}_{1.34}\text{Nd}_{0.26}\text{Pr}_{0.06}\text{Ca}_{0.48}\text{Mn}_{0.05}\text{Th}_{0.04})_{\Sigma 4.00} \\ &(\text{Fe}^{2+}_{0.61}\text{Mn}_{0.39})_{\Sigma 1.00}(\text{Ti}_{0.85}\text{Fe}^{3+}_{0.71}\text{Fe}^{2+}_{0.24}\text{Mg}_{0.16})_{\Sigma 1.96}(\text{Ti}_{1.86}\text{Nb}_{0.14})_{\Sigma 2.00}(\text{Si}_{4}\text{O}_{21.99}). \\ &\text{Илл. 3. Табл. 1. Библ. 10.} \end{split}$$

Ключевые слова: дингдаохенгит-(Се), группа чевкинита, Вишнёвые горы, Южный Урал.

Dingdaohengite-(Ce) was found in assemblage with albite, aegirine, ferroferriwinchite, calcite, pyrite and molybdenite in the central part of the syenite pegmatite of the vein № 125 in Vishnevye mountains in the Southern Urals (the second finding in Russia). The crystals are subisometric, with sides of pinacoidal $\{100\}, \{001\}, \{201\}, \{20\overline{1}\}, \{\overline{3}01\}, \{\overline{2}03\}$ and rhombic prisms $\{110\}, \{111\}$. Parameters of the monoclinic unit cell: a = 13.59(3) Å, b = 5.779(6) Å, c = 11.113(18) Å, $\beta = 100.42(19)^{\circ}$, $V = 858(3)Å^{3}; \text{ empirical formula is } (Ce_{1.77}La_{1.34}Nd_{0.26}Pr_{0.06}Ca_{0.48}Mn_{0.05}Th_{0.04})_{\Sigma 4.00}(Fe^{2+}_{0.61}Mn_{0.39})_{\Sigma 1.00}$ $(Ti_{0.85}Fe^{3_{+}}_{0.71}Fe^{2_{+}}_{0.24}Mg_{0.16})_{\Sigma 1.96}(Ti_{1.86}Nb_{0.14})_{\Sigma 2.00}(Si_{4}O_{21.99}).$

Figures 3. Table 1. References 10.

Key words: dingdaohengite-(Ce), chevkinite group, Vishnevye mountains, Southern Urals.

Введение

Дингдаохенгит-(Ce), относящийся к группе чевкинита, впервые в мире был найден в Китае на месторождении Баян Обо (Jinsha Xu et al., 2008). В России дингдаохенгит-(Се) установлен в сиенитпегматите Обуховского Увала на Южном Урале в 2013 г., а также в коллекционных образцах из Малави, Африка (Касаткин и др., 2015). Новая находка дингдаохенгита-(Се) сделана на Вишневогорском редкометальном месторождении в отвалах карьера зоны № 125 (рис. 1); в статье приведены минеральная ассоциация, форма кристаллов, состав и параметры элементарной ячейки этого минерала.

Методы исследования

Химический состав дингдаохенгита-(Се) и ассоциирующих с ним минералов зоны № 125 горы Каравай изучен А.В. Касаткиным в лабораториях Минералогического музея им. А.Е. Ферсмана РАН (г. Москва) и Департамента наук о Земле Университета (г. Падуя, Италия) методами сканирующей электронной микроскопии и электронно-зондового анализа с применением как энергодисперсионного, так и волново-дисперсионного спектрометров. Анализ с использованием энергодисперсионного спектрометра проводился на сканирующем электронном микроскопе CamScan-4D с системой анализа INCA при ускоряющем напряжении 20 кВ и поглощённом токе 5 нА на металлическом кобальте. Анализ на волново-дисперсионном спектрометре проводился на микроанализаторе Camebax SX-50 при ускоряющем напряжении 20 кВ, силе тока электронного зонда 20 нА, времени накопления импульсов на пике 10 с, на фоне – 5 с; диаметр электронного зонда на поверхности образца – 2 мкм. В качестве стандартов использовались SiK_a, CaK_a – волластонит; MnK_{a} , $TiK_{a} - MnTiO_{3}$; $FeK_{a} - гематит$; MgK_{α} – периклаз; NbL_{α}^{u} – колумбит; LaL_{α}^{u} – LaPO₄; CeL_{α}^{u} – CePO₄; PrL_{β}^{u} – PrPO₄; NdL_{β}^{u} – NdPO₄; ThM_{α}^{u} – ThO₂.

Рентгенодифракционные данные получены профессором Фабрицио Нестола в лаборатории Департамента наук о Земле Университета (г. Падуя, Италия) на монокристальном дифрактометре Agilent Supernova с детектором Pilatus 200K Dectris при MoK_{α} -излучении, ускоряющем напряжении 50 кВ и токе 0.8 мА; расстояние образец—детектор 68 мм, время экспозиции 120 минут.

Форма кристаллов дингдаохенгита-(Се) исследована В.А. Поповым с применением столика Е.С. Фёдорова СФ-4 в качестве гониометра (Институт минералогии УрО РАН, г. Миасс, Россия), чертёж кристаллов выполнен в программе Shape 7.1.

Характеристика дингдаохенгита-(Се) из Вишнёвых гор

Образец кальцит-пироксен-полевошпатового агрегата величиной около 6 см, в котором впоследствии был установлен дингдаохенгит-(Се), был добыт в 1999 году А.М. Кузнецовым в сиенитовом пегматите зоны № 125 Вишневогорского редкометалльного месторождения. В кальците наблюдалось чуть заметное включение минерала чёрного

Рис. 1. Геологическая схема северной части щелочного комплекса Вишнёвых гор (по Б.М. Роненсону, 1966, с изменениями).

1 – гнейсы, амфиболиты и кристаллосланцы ильменогорской свиты (PR₁); 2 – жильные граниты (Pz₁?); 3 – пегматиты гранитные (Pz₂₋₃?); 4–5 – габброиды (4) и серпентиниты (5) Булдымского массива (PR₁?); 6 – апогранитные фениты пироксеновые, амфибол-пироксеновые и биотит-пироксеновые (Pz₁); 7–9 – миаскиты биотитовые (7), мусковитизированные (8), альбитизированные (9) и карбонатиты (Pz₁₋₂); 10 – пегматиты миаскитовые (Pz₂); 11 – основные нарушения; 12 – контуры карьеров. *Стрелкой* показана зона 125.

Fig. 1. Geological scheme of the northwestern part of the Vishnevye Mountains, modified after B.M. Ronenson (1966).

1 – gneisses, amphibolites, schists of the Ilmenogorsky Formation (PR₁); 2 – vein granites (Pz₁?); 3 – granite pegmatites (Pz₂₋₃?); 4–5 – gabbroic rocks (4) and serpentinites (5) of the Buldym massif (PR₁?); 6 – pyroxene, amphibole-pyroxene, and biotite-pyroxene fenites (Pz₁); 7– 9 – biotite (7), micaceous (8), and albitized (9) miaskites with carbonatite zones (Pz₁₋₂); 10 – miaskitic pegmatites (Pz₂); 11 – major faults; 12 – quarries. Zone 125 is indicated by arrow.

цвета с сильным блеском. После обработки в HCl и растворения кальцита образец развалился на две части, представляющие собой амфибол-пироксенполевошпатовые друзы с несколькими хорошо огранёнными кристаллами, которые В.А. Поповым были визуально идентифицированы как чевкинит. Лишь летом 2017 года состоялось инструментальное изучение этих кристаллов, позволившее диагностировать в них дингдаохенгит-(Ce). Вишневогорский дингдаохенгит-(Ce) образует кристаллы до 1.5 см, коричневатые с поверхности и чёрные внутри, блеск матовый до смоляного, излом рако-

Рис. 2. Друзовидные сростки кристаллов дингдаохенгита-(Ce) (Ddh) в разных частях образца (после обработки HCl) в ассоциации с эгирином (Px), ферроферривинчитом (Amf) и альбитом (Ab). Вишнёвые горы, Южный Урал. *Фото:* А.М. Кузнецов.

Fig. 2. Clusters of dingdaochengite-(Ce) crystals in different parts of the sample (after treatment with HCl) in assemblage with aegirine (Px), ferroferriwinchite (Amf) and albite (Ab). Vishnevye Mountains, Southern Urals.

вистый (рис. 2). Дингдаохенгит-(Се) ассоциирует с белым массивным альбитом, серовато-зелёным эгирином, чёрными призматическими кристаллами амфибола, редкими зёрнами жёлтого мелкозернистого пирита и пластинками серебристого молибденита. Электронно-зондовый анализ амфибола показал его принадлежность к члену надгруппы амфиболов ферроферривинчиту с составом, мас. % (отношение Fe²⁺/Fe³⁺ вычислено по балансу зарядов, содержание H₂O – по стехиометрии): Na₂O 4.52; K₂O 0.40; CaO 4.60; MgO 8.10; MnO 1.26; FeO 15.14; Fe₂O₂ 9.28; Al₂O₃ 0.52; TiO₂ 0.42; SiO₂ 53.21; F 1.16; Cl 0.08; H₂O 1.43; -O=F, Cl 0.51, сумма 99.61; эмпирическая формула (в расчёте на 24 аниона) (К_{0.08}Na_{0.05}) $(Na_{1.26}\hat{Ca}_{0.74})_{\Sigma 2.00}(Fe^{2+}{}_{1.89}Mg_{1.81}Mn_{0.16}Fe^{3+}{}_{1.04}Ti_{0.05}^{0.05}Al_{0.05})$ $_{\Sigma_{5,00}}(\mathrm{Si}_{7,96}\mathrm{Al}_{0,04})_{\Sigma_{8,00}}\mathrm{O}_{22}([\mathrm{OH}]_{1,43}\mathrm{F}_{0,55}\mathrm{Cl}_{0,02})_{\Sigma_{2,00}}.$

На основе измерений углов между гранями кристаллов дингдаохенгита-(Се) (рис. 3) определены грани пинакоидов $\{100\}$, $\{001\}$, $\{201\}$, $\{20\overline{1}\}$, $\{\overline{3}01\}$, $\{\overline{2}03\}$ и ромбических призм $\{110\}$, $\{111\}$. Встречаются двойники по $\{001\}$ (см. рис. 2а).

Для минералов группы чевкинита вследствие вхождения примесного Th довольно обычным является метамиктное состояние, поэтому их рентгеновские характеристики часто получают на прокалённом материале (см., напр., Popov *et al.*, 2001; Касаткин и др., 2015; Макагонов, Муфтахов, 2016). Первичный электронно-зондовый анализ вишневогорского дингдаохенгита-(Ce) с использованием энергодисперсионного спектрометра показал, что он содержит не более 1 мас. % ThO₂. Сделанное в результате этого предположение о кристаллическом строении минерала подтвердилось, и его рентгеновские характеристики были получены на монокристальном дифрактометре без прокаливания материала.

Параметры моноклинной элементарной ячейки: a = 13.59(3) Å, b = 5.779(6) Å, c = 11.113(18) Å, $\beta = 100.42(19)^\circ$, V = 858(3) Å³. Как известно, элементарные ячейки минералов перрьеритового и чевкинитового типов отличаются величиной угла β : она составляет 113–114° у первых и 100–101°

Puc. 3. Форма кристаллов дингдаохенгита-(Се) из Вишнёвых гор. *Fig. 3.* Crystals forms of dingdaohengite-(Се) from the Vishnevye Mountains.

МИНЕРАЛОГИЯ 3(3) 2017

Таблица

Химический состав (мас. %) дингдаохенгита-(Се) из зоны № 125, Вишнёвые горы, Урал

Table

№ ан.	1	2	3	4	Среднее, 1–4
La ₂ O ₃	17.41	18.73	17.42	17.83	17.85
Ce ₂ O ₃	23.50	24.71	23.21	23.66	23.77
Pr ₂ O ₃	0.94	0.34	1.07	0.78	0.78
Nd ₂ O ₃	3.49	3.52	3.60	3.79	3.60
CaÕ	2.20	2.11	2.20	2.35	2.22
ThO ₂	1.00	0.85	0.97	0.80	0.91
*FeŐ	5.00	5.05	5.02	4.98	5.01
*Fe ₂ O ₃	4.48	4.75	4.57	4.77	4.64
MgÕ	0.75	0.23	0.74	0.40	0.53
MnO	2.61	2.44	2.67	2.51	2.56
TiO ₂	17.42	18.23	17.17	17.92	17.69
Nb ₂ Õ ₅	1.42	1.24	1.59	1.65	1.48
SiO ₂	19.48	19.82	19.44	19.78	19.63
Сумма	99.70	102.02	99.67	101.22	100.67
Коэффициенты формул (расчёт на Si = 4)					
La	1.32	1.39	1.32	1.33	1.34
Ce	1.77	1.82	1.75	1.75	1.77
Pr	0.07	0.02	0.08	0.06	0.06
Nd	0.26	0.25	0.26	0.27	0.26
Ca	0.48	0.46	0.49	0.51	0.48
Mn	0.05	0.02	0.05	0.04	0.05
Th	0.05	0.04	0.05	0.04	0.04
$\Sigma A + B$	4.00	4.00	4.00	4.00	4.00
Fe ²⁺	0.60	0.60	0.58	0.61	0.61
Mn	0.40	0.40	0.42	0.39	0.39
$\Sigma M1$	1.00	1.00	1.00	1.00	1.00
Ti	0.82	0.87	0.81	0.87	0.85
Fe ³⁺	0.69	0.72	0.71	0.73	0.71
Fe ²⁺	0.26	0.25	0.28	0.23	0.24
Mg	0.23	0.07	0.23	0.12	0.16
$\Sigma M2$	2.00	1.91	2.03	1.95	1.96
Ti	1.87	1.89	1.85	1.85	1.86
Nb	0.13	0.11	0.15	0.15	0.14
$\Sigma M3+M4$	2.00	2.00	2.00	2.00	2.00
Si	4.00	4.00	4.00	4.00	4.00
0*	21.99	21.98	22.03	22.01	21.99

Chemical composition (wt. %) of dingdaohengite-(Ce) from vein № 125, Vishnevye Mt., Urals

Примечание. *) расчёт по балансу зарядов. Микрозонд Camebax SX-50, аналитик A.B. Касаткин. *Note*. *) calculated on the basis of the charge balance. Camebax SX-50 microprobe, analyst A.V. Kasatkin

у вторых. Изученный нами дингдаохенгит-(Се) из зоны № 125 относится к структурному типу собственно чевкинита, а не перрьерита.

Химический состав дингдаохенгита-(Се) и эмпирические коэффициенты с учётом распределения октаэдрически координированных катионов по *М*-позициям представлены в таблице. При расчёте эмпирических формул сначала заполнялись позиции *A* и *B* крупными катионами *REE*³⁺, кальцием, торием и небольшой частью Mn²⁺ до полного заполнения позиций. Распределение катионов по *M*-позициям и отнесение данных составов к дингдаохенгиту-(Се) осуществлялось по аналогии со структурно изученным образцом из Баян Обо (Jinsha Xu *et al.*, 2008) и с учётом данных о составе структурно изученного образца христофшеферита-(Се), являющегося, по сути дела, Mn²⁺-аналогом дингдаохенгита-(Се) (Chukanov *et al.*, 2012). Позиции *M*3+*M*4 заполнялись Ті и Nb, позиция *M*1 – остаточным Mn и Fe²⁺. Оставшиеся катионы – Ті, Fe²⁺, Fe³⁺, Mg — помещались в смешанную позицию M2. Доминирование титана над остальными катионами в позиции M2 явилось основанием для отнесения конкретного химического состава к дингдаохенгиту-(Ce). Валентность железа рассчитана по балансу зарядов, а весь марганец условно принят за Mn²⁺, так как при наличии железа в различной степени окисления марганец окисляется труднее.

Обсуждение результатов и выводы

Моноклинные оксосиликаты с диортогруппами Si₂O₇ группы чевкинита имеют общую кристаллохимическую формулу $A_2B_2M_5(Si_2O_7)_2O_8$, где A и B — крупные катионы REE^{3+} , Sr и Ca, a M – октаэдрически координированные более мелкие катионы Ti, Fe²⁺, Fe³⁺, Zr, Cr³⁺, Mg, Mn²⁺, Nb, и Al (Чуканов и др., 2011) (полужирным выделены видообразующие катионы). В структуре чевкинитового типа присутствуют четыре неэквивалентных *М*-позиции. Позиции *М*3 и *М*4 заселены в основном Ті. В позиции M2 может преобладать как Ті, так и Fe^{2+} , Fe^{3+} или Cr^{3+} . В позиции M1 доминируют различные двух- или трёхвалентные катионы (Fe²⁺, Mn²⁺, Mg, Fe³⁺). Дингдаохенгит-(Се) от остальных минералов структурного типа чевкинита отличается по химическому составу и способу упорядочения М-катионов: в позиции М1 у дингдаохенгита-(Се) доминирует Fe^{2+} , а в позиции M2 - Ti.

В образце из зоны № 125 Вишнёвых гор Ті незначительно, но стабильно доминирует над Fe³⁺, Fe²⁺ и Mg в смешанно-заселённой позиции M2. Все полученные нами составы формально относятся к дингдаохенгиту-(Ce). Следует оговориться, что наши данные получены для одного кристалла, поэтому наличие собственно чевкинитовых составов в изученном образце весьма вероятно.

Ранее на Южном Урале дингдаохенгит-(Се) был установлен в образцах из сиенит-пегматитов Обуховского увала в виде редких изометричных зёрен до 2 мм чёрного цвета с сильным смоляным блеском, коричневой чертой и раковистым изломом (Касаткин и др., 2015). Вследствие существенно более высокого содержания тория (до 3.77 мас. % ThO_2), минерал с Обуховского увала метамиктен, поэтому его рентгеновские характеристики были получены на прокалённом материале (Касаткин и др., 2015). В указанных образцах дингдаохенгит-(Се) образует твёрдые растворы с чевкинитом-(Се), причём составов, отвечающих чевкиниту, гораздо больше (Касаткин и др., 2015).

Собственно чевкинит-(Се) в северной части Вишнёвых гор был найден М.Г. Исаковым в 1950 г. и исследован позднее (Еськова и др., 1964; Попова и др., 1998; и др.). Недавно в образцах из зоны № 125 охарактеризован и перрьерит-(Се) (Макагонов, Муфтахов, 2016). Южнее, в Ильменских горах, кроме чевкинита-(Се), известен и его хромово-магниевый аналог – поляковит-(Се) (Поляков, Недосекова, 1990; Ророv et al., 2001).

Таким образом, на Урале в Ильменогорско-Вишневогорском комплексе достоверно изучены и описаны 4 минерала группы чевкинита – чевкинит-(Се), поляковит-(Се), дингдаохенгит-(Се) и перрьерит-(Се). Отметим, что находка ассоциирующего с дингдаохенгитом-(Се) амфибола – ферроферривинчита – является первой на Урале.

Авторы выражают искреннюю признательность В.И. Поповой и Е.В. Белогуб (Институт минералогии УрО РАН) за конструктивное обсуждение текста статьи и высказанные при её подготовке замечания и дополнения.

Литература

Еськова Е.М., Жабин А.Г., Мухитдинов Г.Н. (1964) Минералогия и геохимия редких элементов Вишнёвых гор. М., Наука, 319 с.

Касаткин А.В., Епанчинцев С.Г., Нестола Ф. (2015) Дингдаохенгит-(Се) с Обуховского Увала, Южный Урал: первая находка в России. *Минералогия*, 1(3), 3–7.

Макагонов Е.П., Муфтахов В.А. (2016) РЗЭ- и Srминерализация с перрьеритом-(Се) в щелочном силикатно-карбонатном парагенезисе экзоконтактовой зоны Вишневогорского массива (Южный Урал). *Минералогия*, **2**(4),19–30.

Поляков В.О., Недосекова И.Л. (1990) Минералогия апогипербазитовых фенитов и карбонатитов южной части Ильменских гор / Минералогия месторождений и зон техногенеза рудных районов Урала. Свердловск, УрО АН СССР, 6–17.

Попова В.И., Исаков М.Г., Муфтахов В.А. (1998) Новые данные о крупных кристаллах чевкинита из Вишнёвых гор. *Уральский геологический журнал*, (6), 42–47.

Роненсон Б.М. (1966) Происхождение миаскитов и связь с ними редкометального оруденения. М., Недра, 173 с.

Чуканов Н.В., Бласс Г., Пеков И.В., Белаковский Д.И., Ван К.В., Расцветаева Р.К., Аксенов С.М. (2011) Перрьерит-(La) (La,Ce,Ca)₄Fe²⁺(Ti,Fe)₄(Si₂O₇)₂O₈ — но-

МИНЕРАЛОГИЯ 3(3) 2017

вый минеральный вид из вулканического района Айфель, Германия. Записки РМО, **140**(6), 34–44.

Сhukanov N.V., Aksenov S.M., Rastsvetaeva R.K., Belakovskiy D.I., Gottlicher J., Britvin S.N., Möckel S. (2012) Christofschäferite-(Ce), (Ce,La,Ca)₄Mn²⁺(Ti,Fe³⁺)₃ (Fe³⁺,Fe²⁺,Ti)(Si₂O₇)₂O₈, a new chevkinite-group mineral from the Eifel area, Germany. *Новые данные о минералах* (Труды Минералогического музея РАН им. А.Е. Ферсмана), **47**, 33–42.

Jinsha Xu, Guaming Yang, Guowu Li, Zhilan Wu, and Ganfu Shen (2008) Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China: Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup. American Mineralogist, **93**, 740–744.

Popov V.A., Pautov K.A., Sokolova E., Hawthorne F.C., McCammon C., Bazhenova L.F. (2001) Polyakovite-(Ce), $(REE,Ca)_4(Mg,Fe^{2+})(Cr_3 + Fe^{3+})_2(Ti,Nb)_2Si_4O_{22}$, a new metamict mineral species from Ilmen mountains, Southern Urals, Russia: mineral description and crystal chemistry. *Canadian Mineralogist*, 39, 1095–1104.

References

Chukanov N.V., Blass G., Pekov I.V., Belakovsky D.I., Van C.V., Rastsvetaeva R.K., Aksenov S.M. (2011) [Perrierite-(La) (La,Ce,Ca)₄Fe²⁺(Ti,Fe)₄(Si₂O₇)₂O₈ a new mineral species of the volcanic region Eifel, Germany]. *Zapiski RMO [Proceedings of Russian Mineralogical Society]*, **140**(6), 34–44. (in Russian) **Es'kova E.M., Zhabin A.G., Mukhitdinov G.N.** (1964) [Minerlogy and geochemistry of rare elements of the Vishnevye mountains]. Moscow, Nedra, 319 p. (in Russian)

Cartesian A.V., Epanchintsev S.G., Nestola F. (2015) [Dingdaohengite-(Ce) from Obukhovskiy Uvals, South Urals: first finding in Russia]. *Mineralogiya [Mineralogy]*, 1(3), 3–7. (in Russian)

Makagonov E.P., Muftakhov V.A. (2016) [REE- and Sr-mineralization with perrierite-(Ce) in alkaline silicatecarbonate assemblage of the contact zone of the Vishnevogorsk block (South Urals)]. *Mineralogiya [Mineralogy]*, **2**(4), 19–30. (in Russian)

Polyakov V.O., Nedosekova I.L. (1990) [Mineralogy of the apoultramafic fenites and carbonatites of the southern part of the Ilmensky mountains]. In: *Mineralogiya mestorozhdeniy i zon technogeneza rudnych rayonov Urala [Mineralogy of deposits and zones of technogenesis of ore regions of the Urals*]. Sverdlovsk, UB AN SSSR, 6–17. (in Russian)

Popova V.I., Isakov M.G., Muftakhov V.A. (1998) [New data on large chevkinite crystals from the Vishnevye mountains]. *Uralskiy geologicheskiy zhurnal [Uralsky geological magazine]*, (6), 42–47. (in Russian)

Ronenson B.M. (1966) [The origin of miaskites and related rare metal ore mineralization]. Moscow, Nedra, 173 p. (in Russian)

Поступила в редакцию 9 сентября 2017 г.