УДК 549:553.677.3

ЗОНАЛЬНОСТЬ ФЛОГОПИТА ИЗ КАРБОНАТИТ-ПЕГМАТИТОВ БУЛДЫМСКОГО МЕСТОРОЖДЕНИЯ ВИШНЁВЫХ ГОР (ЮЖНЫЙ УРАЛ)

В.И. Попова¹, В.А. Котляров¹, И.Л. Недосекова², В.А. Попов¹

¹Институт минералогии УрО РАН, г. Миасс; popov@mineralogy.ru ²Институт геологии и геохимии УрО РАН, г. Екатеринбург

ZONATION OF PHLOGOPITE OF CARBONATITE-PEGMATITES OF THE BULDYM DEPOSIT OF THE VISHNEVYE MOUNTAINS (SOUTH URALS)

V.I. Popova¹, V.A. Kotlyarov¹, I.L. Nedosekova², V.A. Popov¹

¹Institute of Mineralogy UB RAS, Miass; popov@mineralogy.ru ²Institute of Geology and Geochemistry UB RAS, Yekaterinburg

В спайной пластине величиной 19 см от столбчатого кристалла флогопита Булдымского месторождения на Южном Урале электронно-зондовым микроанализом исследован состав 43-х чередующихся зеленовато-коричневатых, желтовато-коричневатых и более тёмных коричневых зон роста. Тёмные зоны роста флогопита более железистые и титанистые (что характерно для слюд группы аннит–флогопит). Состав разных зон исследованного флогопита близок составу слюд, наиболее часто отмечавшихся в карбонатитах. Во флогопите встречены редкие микровключения кальцита, доломита, апатита, полевого шпата, магнетита, циркона и пирохлора.

Илл. 7. Табл. 2. Библ. 22. *Ключевые слова:* флогопит, зоны роста, карбонатит, Булдымское месторождение, Южный Урал.

In spaen plate size 19 cm from the columnar crystal of phlogopite Buldym deposit in the Southern Urals to study the composition 43 of alternating greenish-brown, yellowish-brown and darker brown areas of opportunity for electron-probe microanalysis. Dark zones growth of phlogopite more by titaniferous and ferruginous (which is typical of the mica group, annite–phlogopite). The composition of the different zones of the studied phlogopite is close to the composition of the micas, the most frequently observed in the carbonatites. In phlogopite met by a rare micro-inclusions of calcite, dolomite, apatite, feldspar, magnetite, zircon and pyrochlore.

Figures 7. Tables 2. References 22.

Key words: phlogopite, zones growth, carbonatite, Buldym deposit, Southern Urals.

Введение

Булдымский серпентинитовый массив, расположенный на северо-западной окраине пос. Вишневогорск Челябинской области, в 0.5–1.5 км южнее оз. Булдым, впервые отмечен А.М. Зайцевым (1884), затем осмотрен А.В. Николаевым (1912), и в нём указывались слюдяные жилы (Белянкин и Соколов, 1933). Месторождение вермикулита изучено В.В. Беловым в 1933 г. и А.С. Амеландовым с К.Н. Озеровым (1934). По результатам разведки в 1933–1936 гг. месторождение более полно охарактеризовано В.В. Беловым (1936 ϕ). За период разведки и эксплуатации 1936–1966 гг в месторождении выявлены более 11 жил вермикулита ВСВ простирания, из них наибо́льшие – жилы № 1 и № 2 общей длиной ~ 650 м и мощностью 0.5–25 м; прочие жилы до 30 м длиной при мощности до 1–5 м. Промышленный вермикулит встречался до глубин 40–60 м, а ниже флогопит почти не гидратирован (Белов, 1936 ϕ ; Токмаков, Замураева, 1963). Жилы приурочены к серии разломов, секущих серпен-

Рис. 1. Схема строения Булдымского массива (по Б.М. Роненсону, 1966) и локализация выходов флогопитовых жил (по П.П. Токмакову и М.Г. Замураевой, 1963), с изменениями.

1 – амфиболиты с прослоями плагиогнейсов и кварцитов (PR₁*il*); 2 – плагиогнейсы с прослоями кварцитов, диопсид-скаполитовых пород и мраморов (PR₁vs); 3 – серпентиниты (PR₁); 4 – актинолитовые породы; 5 – фениты; 6 – миаскиты (S₁); 7 – флогопитовые жилы (с участками карбонатит-пегматитов); 8 – тектонические разломы (основные). *1, 2* – карьеры на жилах № 1 и № 2. Шх. – ствол шахты «Капитальная». Зона 140 – Вишневогорское месторождение ниобиевых руд.

Fig. 1. The structure of the Buldym massif (according to B.M. Ronenson, 1966), and the localization of the outcrops of phlogopite veins (according to P.P. Tokmakov and M.G. Zamuraeva, 1963), with changes.

1 – amphibolites with interlayers of plagiogneisses and quartzites (PR_1il); 2 – plagiogneisses with intercalations of quartzites, diopside-scapolitic rocks and marbles (PR_1vs); 3 – serpentinites (PR_1); 4 – actinolite rocks; 5 – fenites; 6 – miaskity (S_1); 7 – phlogopite veins (with carbonatitepegmatite sections); 8 – main faults. *1*, *2* – quarries on the veins N 1 and N 2. *IIIx.* – the trunk of the «Capital'naya» mine. *Zone 140* – Vishnevogorsk Nb deposit.

тиниты Булдымского массива и вмещающие его метаморфические породы. В Западном вермикулитовм карьере (по жиле № 2) И.Л. Недосековой в 1984 г. обследованы жилы слюдитов с падением на Ю-ЮВ ∠40-65°; более крутопадающие участки жил редки и отмечались и в Вермикулитовом карьере (по жиле № 1). В разрезе по скважинам, пробуренным Вишневогорской ГРП, на глубинах ниже 50 м падение жил меняется на северо-западное со значительной вариацией углов падения до субгоризонтальных в ряде участков (Левин и др., 1997; Недосекова, 2007), что обусловлено проявлением разнонаправленных тектонических нарушений. В.А. Утенковым при анализе изомощностей и стратоизогипс подошвы и кровли Булдымского массива в средней его части выявлена система надвигов

Рис. 2. Разрез по жиле № 1 Булдымского месторождения флогопита (по В.В. Белову, 1936ф), с изменениями.

1 – серпентиниты; 2 – рихтерит-карбонатные породы; 3, 4 – вермикулит (3 – крупнолистоватый, 4 – мелкочешуйчатый); 5, 6 – «биотит» (флогопит) (5 – крупнолистоватый, 6 – мелкочешуйчатый).

Fig. 2. Cross-section of vein \mathbb{N} 1 of the Buldym phlogopite deposit (modified after V.V. Belov, 1936 ϕ).

1 – serpentinites; 2 – richterite-carbonate rocks; 3, 4 – vermiculite (3 – large-leafed, 4 – small-scaly); 5, 6 – «bio-tite» (phlogopite) (5 – large-leafed, 6 – small-scaly).

с падением на запад с ∠40–60°, где локализован и ряд разрывов с падением на ЮВ под углами от 30–40° до 70–80° (Левин и др., 1997); к подобному разлому, вероятно, и приурочена жила № 1 (рис. 1).

В процессе отработки месторождения из него добыто около 350 тыс. т вермикулита (Левин и др., 1997). В рыхлом агрегате вермикулита были найдены крупные кристаллы монацита и апатита (Белов, 1937), а также циркон и ильменит в жилах доломит-флогопитовых карбонатитов (Свяжин, 1966). Средний возраст циркона из доломитовых карбонатитов ~ 268 ± 6 млн. лет (Недосекова и др., 2016).

В 1960–1980 гг. Вишневогорской ГРП пробурен ряд скважин под рудную зону 140 Вишневогорского месторождения ниобиевых руд (см. рис. 1), и С.Н. Никандровым и В.Я. Левиным в 1980 г. в прожилке рихтерит-флогопитового карбонатита среди щелочных метасоматитов в Булдымском массиве встречено «гнездо» с колумбитом и пирохлором. После опробования керна ряд жил оконтурен как Булдымское месторождение ниобия и редких земель со средним содержанием 0.164 мас. % Nb₂O₅ и забалансовыми запасами 4.6 тыс. т (Левин и др., 1997).

В геологическом разрезе по жиле № 1 до глубины 50 м (рис. 2) карбонаты в центральной части жилы показаны не были (Белов, 1936ф), вероятно,

Рис. 3. Часть затопленного карьера по жиле № 1. Фото: М. Зорин, 2013 г. (www.uralmines.ru). Fig. 3. Part of the flooded quarry along the vein № 1. Photo: M. Zorin, 2013.

Рис. 4. Флогопиты в отвале карьера (a) и кристалл флогопита в карбонатите (δ).

Фото: А.М. Кузнецов, 2015 г.

Fig. 4. Phlogopite in the quarry dump (a) and phlogopite crystal in carbonatite (δ).*Photo:* A.M. Kuznetsov, 2015.

вследствие частичного их растворения в коре выветривания, где флогопит гидратирован в разной степени с образованием вермикулита. Нужно отметить, что термин «карбонатит» тогда ещё не был использован при описании карбонатсодержащих зон жил в Булдымском массиве. Карьер по жиле № 1 уже затоплен (рис. 3) и постепенно засыпается.

В ряде последующих публикаций отмечалось, что агрегаты флогопита слагают как отдельные жилы, так и эндо- и экзоконтактовые зоны карбонатитовых жил (Левин и др., 1987; Недосекова, 1986, 2007; и др.). При отработке месторождения канавами и 4-мя карьерами (а также шахтой «Вермикулитовая» глубиной 40 м и шурфами) были вскрыты жильные тела флогопитовых и флогопитрихтеритовых пород, содержащих до 10 % объёма доломита и кальцита. Центральные части таких тел нередко представляют собой крупно-гигантозернистые карбонатиты с крупным флогопитом (рис. 4) и акцессорными пирохлором (до 5 см), монацитом (до 10 см) и титанистым магнетитом величиной до 5-20 см (Левин и др., 1987), т. е. являются карбонатит-пегматитами.

Средний химический состав флогопита Булдымского месторождения охарактеризован ранее в рукописных отчётах и публикациях (Белов, 1936ф; Казанцев, 1934ф; Бонштедт-Куплетская, 1951; Токмаков, Замураева, 1963; Роненсон, 1966; Свяжин, 1966; Левин, 1974; Левин и др., 1987; Недосекова, 1988, 2007; Недосекова и др., 2009), где нет данных о зональности состава отдельных его кристаллов. Отмечалось только, что вблизи поверхности в жилах флогопит с периферии и по трещинам нередко частично преобразован в вермикулит (Токмаков, Замураева, 1963; и др.), и иногда в кристаллах отмечалось чередование зон и участков зелёного флогопита и красновато-коричневого тетраферрифлогопита с обратной схемой абсорбции (Левин и др., 1987; Недосекова, 1988, 2007).

В 2004 г. в отвале слюдит-пегматитов из карьера по жиле № 1 Булдымского месторождения В.А. Поповым была отобрана крупная пластина флогопита, где в тонком его листе проявлена цветовая зональность; статья посвящена исследованию неоднородностей её состава.

Препараты флогопита и методика исследования

Пластина зеленовато-коричнево-чёрного флогопита размером $19 \times 12 \times 1$ см (рис. 5*a*) представляет собой спайный обломок от столбчатого кристалла, подобного изображённому на рисунке 4*6*. В отделённом от пластины тонком слое (~0.07 мм) визуально на просвет видна цветовая зональность с чередованием зеленовато-коричневатых, желтовато-коричневатых и более тёмных серовато-коричневатых зон (см. рис. 5*6*, *в*). Для анализа из тон-

Рис. 5. Вид исходной пластины флогопита (*a*), тонкого её слоя с участками анализа (б) и деталь зональности (*в*). *Фото:* В.А. Попов.

Fig. 5. Primary phlogopite plate (*a*), its thin layer with the analysis sites (δ) and the zonality part (*b*). *Photo:* V.A. Popov.

кого слоя по спайности (001) флогопита вырезаны 12 пластинок последовательных зон двух разных форм роста кристалла с углом между проекцией зон ~120.5°, вероятно, пинакоида {010} и призмы {110}. В этом сечении зоны роста призмы немного шире и контрастней, и число их несколько больше, чем зон (010). Пластинки № 1-4, 6, 8 характеризуют ряд зон роста пинакоида, а № 5, 7, 9–12 – зон роста призмы (см. рис. 5б). Для электронно-зондового анализа пластинки были наклеены на проводящую плёнку, и в 48-ми точках определён состав зон флогопита в Институте минералогии УрО РАН (г. Миасс) на рентгеновском электронном микроанализаторе РЭММА-202М с энерго-дисперсионной приставкой LZ-5 Link Sistems с Si-Li детектором при ускоряющем напряжении 20 кВ, токе зонда 4 нА, диаметре зонда ~5 мкм с использованием эталонов MINM 25-53 и Mineral Mount Serial № 01-44 (аналитик В.А. Котляров). Содержание фтора в ряде зон определено методом растровой электронной микроскопии (Tescan Vega 3 sbu с ЭДС Oxford Instruments X-act при ускоряющем напряжении 20 кВ, аналитик И.А. Блинов), также с использованием эталонов MINM-25-53. Химический анализ суммарной пробы флогопита (из остатка тонкого слоя пластины) выполнен весовым методом Т.В. Семёновой и М.Н. Малярёнок.

Минеральные ассоциации флогопита в Булдымском месторождении

В жильных телах карбонатитов и щелочных флогопит-рихтеритовых и флогопитовых пород Булдымского месторождения, кроме породообразующих минералов (флогопита, тетраферрифлогопита, рихтерита, кальцита и доломита) при исследовании 6-ти валовых проб в лабораториях Уралгеологии и ИМГРЭ выявлены 28 менее распространённых и акцессорных минералов (в алфавитном порядке): алланит, анатаз, апатит, барит, борнит, галенит, гранат (гроссуляр-альмандинового ряда), ильменит, колумбит-(Fe), корунд, «лимонит», магнетит (титаномагнетит), молибденит, монацит, пирит, пирохлор (гидрокальциопирохлор), пирротин, рутил, сфалерит, титанит, циркон, фергусонит-(Се), халькозин, халькопирит, хромит, шпинель, эпидот, эшинит (Левин и др., 1987, 1997). В карбонатитах дополнительно установлены ещё 9 минералов – арфведонит, винчит, гематит, пентландит, стронцианит, ферсмит, флюорит, чевкинит, магнезиальный колумбит, а также новый минеральный вид в группе амфиболов – фторрихтерит (Баженов и др., 1993). В цирконе из доломитовых карбонатитов отмечались микровключения монацита, ксенотима, пирохлора, рутила и торианита (Недосекова

Таблица 1

Химические анализы (мас. %) флогопита неизменённого (1–3*a*) и гидратированного (4, 4а) и вермикулита (5, 5*a*) из карьера по жиле № 1 Булдымского месторождения (Токмаков, Замураева, 1963)

Table 1

Chemical analyses (wt. %) of the phlogopites unchanged (1–3*a*) and hydrated (4, 4a), and vermiculite (5, 5*a*) in the vein No. 1 from Buldym deposit quarry (Tokmakov, Zamuraeva, 1963)

N⁰	SiO.	TiO.	Al.O.	Fe ₂ O ₂	FeO	MnO	MgO	CaO	Na ₂ O	K.O	H.O ⁻	$H_{*}O^{+}$	F	-O=F.	Сумма	
ан. ²		2	2 3	2 3			0		2	2	2	2		2	5	
1	41.76	1.76 0.38 10.45 2.90 5.32 0.23 22.57 0.12 1.16 9.61 0.11 2.85 3.63 -1.52 99.57														
2	41.48	41.48 0.56 11.05 1.70 5.81 0.25 24.54 0.49 0.70 9.48 0.11 2.02 3.20 -1.34 100.34														
3	40.62	40.62 0.40 10.52 3.44 4.98 0.04 23.40 0.07 0.63 9.56 1.18 2.64 3.49 -1.46 99.51														
3 <i>a</i>	41.14	0.40	10.65	3.48	5.03	0.04	23.67	0.07	0.63	9.66	_	2.67	3.53	-1.48	99.49	
4	40.88	0.36	11.27	4.74	2.98	0.11	21.37	_	0.05	6.96	3.56	5.64	3.28	-1.37	99.83	
4a	42.38	0.36	11.67	4.91	3.09	0.11	22.16		0.05	7.21	-	5.85	3.41	-1.43	99.77	
5	37.49	0.26	10.21	3.84	_	0.01	22.24	0.98	_	1.34	10.79	10.54	3.35	-1.40	99.65	
5a	41.97	0.29	11.43	4.30	_	0.01	24.90	1.10	_	1.50	_	11.80	3.75	-1.57	99.48	
					Эмпир	оически	ие форм	улы на	7 катис	онов (У	(+Z)					
1	$(K_{0.90}N)$	a ₀₁₇ Ca	$(0.01)_{\Sigma 1.08}$	$Mg_{248}F$	$e^{2+}_{0,33}Fe$	$e^{3+}_{0,15}$ Ti ₀	$Mn_{0.01}$	$S_{53.01}(Si)$	$_{3.08}Al_{0.91}$	$Fe^{3+}_{0.01}$	$O_{540}O_{10}($	(OH) ₁₁₅	$F_{0.85}) \cdot 0.$	77 H ₂ O		
2	$(K_{0.87}^{0.00}N$	$[a_{010}]Ca$	$(0.04)_{\Sigma 1.01}$	$Mg_{262}F$	$e^{2+0.55}$ Ti	$_{0.02}Mn_0$	$Cr_{0.01}$	(Si, 97	Al ₀₉₃ Fe	$^{3+}_{0.09}$ Ti ₀	$_{01})_{\Sigma_{4}0}O$	((OH)	$_{1,26}F_{0,7,2}C$	$l_{0,02} \cdot H_{2}$)	
3	$(K_{0.90}^{0.07})$ N	a _{0 09} Ca	$(0.01)_{\Sigma 1.00}$	$Mg_{257}F$	$e^{2+0.55}Fe$	$e^{3+}_{0,09}$ Ti	$(\bar{S}_{102})_{\Sigma^{2},99}(\bar{S}_{102})_{\Sigma^{2},$	i, 99Al	$_{91}$ Fe ³⁺ 010	$O_{540}O_{10}$	((ÕH)	$F_{0.81}$) •	0.82 H	I,Õ		
3 <i>a</i>	$(K_{0.90}N)$	a _{0.09} Ca	$(0.01)_{\Sigma 1.00}$	$Mg_{257}F$	$e^{2+}_{0,31}Fe$	e^{3+} Ti	$(Si)_{\Sigma_{3,0}}$	$Al_{0.91}$	Fe^{3+}_{009})	$_{\Sigma 4 0} O_{10}$	$(OH)_{110}$	$(\tilde{F}_{0.81}) 0$.53 H ₂ C)		
4	$\left \left(\Box \widetilde{K}_{06} \right) \right $	$Na_{0.01}$)	_{Σ0 68} (Mg	$F_{2,41} \tilde{F} e^{2+}$	$_{19}Fe^{3+}$	$_{7}Al_{011}$	$\tilde{i}_{0.02}Mn_{0.0}$	$(1)_{\Sigma_{3,01}}(5)$	$Si_{310}Al_{0}$	$(0,0)_{\Sigma_{4}} (0,0)_{\Sigma_{4}} $	10((OH)	$F_{0.79}$	•1.09 Ĥ,	0		
4 <i>a</i>	$(\Box K_{0.6'})$	$Na_{0.01}$)	_{Σ0.68} (Mg	$F_{2.41}^{2.41} Fe^{2+0}$	Fe^{3+}	$_{7}Al_{0.11}$	$i_{0.02}Mn_{0.0}$	$(\Sigma_{23.01})_{\Sigma_{3.01}}$	Si _{3.10} Al _{0.0}	$_{20})_{\Sigma 4.0} O$	((OH)	$F_{0.79}^{(121)}$	•1.09 H ₂	0		
5	$\left \left(\Box K_{0.1^2}\right)\right $	$Ca_{0.09}$	Σ0.23 (Mg	Fe^{3+}_{0}	24Al	$(\bar{\Gamma}i_{0.02})_{\Sigma 3.0}$	$_{01}(Si_{3.06}A)$	$l_{0.94})_{\Sigma 4.0}$	0 ₁₀ ((OH	$\tilde{I}_{1.14} \tilde{F}_{0.8}$	(5.51)	H ₂ O	-			
5 <i>a</i>	$ (\Box K_{0.14}) $	$_{4}Ca_{0.09})$	50.23(Mg	$_{2.70}$ Fe ³⁺ 0	$_{24}Al_{0.04}$	$(\Gamma i_{0.02})_{\Sigma 3.0}$	$(Si_{3.06}Al$	$(0.94)_{\Sigma 4.0}$	$D_{10}((OH))$	$)_{1.14} F_{0.86}$	s)·3.69	H ₂ O				

Примечания. В ан. 2 Cr₂O₃ 0.09 и Cl 0.20 мас. %. Ан. 3*a*, 4*a*, 5*a* – после просушки проб. Прочерк – не обнаружено. Формулы рассчитаны нами.

Notes. Analysis 2 - 0.09 wt. % Cr₂O₃ and 0.20 wt. % Cl. Analysis 3a, 4a, 5a are on the samples drying. Dash – not found. The formulas recalculated by us.

и др., 2014). Отмечалось, что собственно флогопиты встречаются в доломит-кальцитовых карбонатитах и в доломит-кальцит-флогопит-рихтеритовых породах (Лебедева, Недосекова, 1993; Недосекова, 1986, 2007).

На боковой поверхности исследованном нами пластины флогопита встречены редкие вростки зёрен калиевого полевого шпата и магнетита до 1– 3 мм и микровключения кальцита, реже – доломита, апатита, полевого шпата, циркона и, предположительно, пирохлора. В анализированных 12-ти пластинках из тонкого слоя пластины флогопита минеральные включения не встречены.

Вариации состава флогопита Булдымского месторождения

Ранние химические (силикатные) анализы флогопита из жил в Булдымском массиве, частично опубликованные Бонштедт-Куплетской (1951) по рукописным материалам 1934–1946 гг. Е.З. Бурьяновой, В.П. Казанцева, К.И. Висконта и М.Б. Бородаевской, отличались вдвое меньшими содержаниями оксидов Fe (при более высоких – MgO) от биотитов нефелин-полевошпатовых пегматитов Курочкина Лога и горы Каравай. По результатам исследований П.П. Токмакова и М.Г. Замураевой (1963) можно отметить, что среди проанализированных ими проб встречены менее железистые высокомагнезиальные флогопиты. Неизменённые и гидратированные образцы из карьера по жиле № 1 Булдымского вермикулитового месторождения различаются содержанием ряда главных компонентов: в первичном флогопите больше K, Al, Fe, Ti, а вермикулит высоководный с пониженными содержаниями K, Al, Si, Fe, Ti при существенном дефиците катионов в позиции A (табл. 1).

По данным химического анализа (Левин и др., 1987), флогопиты из керна скважин разных жил более железистые (FeO + Fe₂O₃ \approx 9.8–12.7, MgO \approx 19–22 мас. %) по сравнению с тетраферрифлогопитами (FeO + Fe₂O₃ \approx 7, MgO \approx 24.45–25.72 мас. %). Химические анализы слюд из горных выработок и керна скважин в Булдымском массиве (Недосекова, 1988, 2007) тоже различаются: в зеленовато-коричТаблица 2

Table 2 growth zones from Buldym deposit	Эмпирические формулы на 7 катионов (Y + Z)	$(K_{0.94}Na_{0.05})(Mg_{2.07}Fe_{0.76}Al_{0.09}Ti_{0.05}Mn_{0.07}Cr_{0.01})_{23.00}(Si_{2.95}Al_{1.05})_{24.0}O_{10}(OH_{148}F_{0.25})$	$(K_{0.95}Na_{0.03})(Mg_{1.96}Fe_{0.84}Al_{0.10}Ti_{0.06}Mn_{0.03}Cr_{0.01})_{23.00}(Si_{2.95}Al_{1.06})_{24.0}O_{10}(OH,F)_2$	$(K_{0.93}Na_{0.05})(Mg_{1.93}Fe_{0.83}Al_{0.12}Ti_{0.07}Mn_{0.02}Cr_{0.02})_{22.99}(Si_{2.92}Al_{1.08})_{240}O_{10}(OH_{1.55}F_{0.47})$	$(K_{0.95}Na_{0.04})(Mg_{1.99}Fe_{0.84}Al_{0.06}Ti_{0.08}Mn_{0.02}Cr_{0.01})_{\Sigma3.00}(Si_{2.94}Al_{1.06})_{24.0}O_{10}(OH,F)_2$	$(K_{0,92}Na_{0,04})Mg_{1,97}Fe_{0,82}Al_{0,11}Ti_{0,06}Mn_{0,02}Cr_{0,01})_{22,99}(Si_{2,96}Al_{1,04})_{24,0}O_{10}(OH,F)_2$	$(K_{0,93}Na_{0,03})(Mg_{1,97}Fe_{0,83}Al_{0,07}Ti_{0,07}Mn_{0,02}y_{22,99}(Si_{2,92}Al_{1,08})_{240}O_{10}(OH,F)_2$	$(K_{0.93}Na_{0.04})(Mg_{1.92}Fe_{0.87}Al_{0.07}Ti_{0.07}Mn_{0.02}Cr_{0.01})_{22.97}(Si_{2.96}Al_{1.04})_{24.0}O_{10}(OH,F)_2$	$(K_{0.95}Na_{0.03})(Mg_{1.94}Fe_{0.85}Al_{0.11}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{22.99}(Si_{2.91}Al_{1.09})_{240}O_{10}(OH,F)_2$	$(K_{0.95}Na_{0.06})(Mg_{2.02}Fe_{0.79}Al_{0.10}Ti_{0.05}Mn_{0.02}Cr_{0.01})_{22.99}(Si_{2.94}Al_{1.06})_{24.0}O_{10}(OH,)_2$	$(K_{0.93}Na_{0.02})(Mg_{2.03}Fe_{0.77}Al_{0.12}Ti_{0.05}Mn_{0.02}Cr_{0.01})_{23.00}(Si_{2.97}Al_{1.03})_{24.0}O_{10}(OH,F)_2$	$(K_{0.93}Na_{0.04})(Mg_{2.05}Fe_{0.77}Al_{0.09}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{23.00}(Si_{2.95}Al_{1.05})_{24.0}O_{10}(OH,F)_2$	$(K_{0.93}Na_{0.04})(Mg_{2.02}Fe_{0.78}Al_{0.10}Ti_{0.06}Mn_{0.03}Cr_{0.01})_{23.00}(Si_{2.95}Al_{1.05})_{24.0}O_{10}(OH,F)_2$	$(K_{0.98}Na_{0.03})(Mg_{2.02}Fe_{0.81}Al_{0.09}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{23.01}(Si_{2.94}Al_{1.06})_{24.0}O_{10}(OH,F)_2$	$(K_{0,89}Na_{0,02})(Mg_{2,08}Fe_{0,74}Al_{0,10}Ti_{0,05}Mn_{0,02})_{22,99}(Si_{2,95}Al_{1,05})_{24,0}O_{10}(OH,F)_2$	$(K_{0,87}Na_{0,07})(Mg_{2,12}Fe_{0,71}Al_{0,09}Ti_{0,05}Mn_{0,03})_{23,00}(Si_{2,97}Al_{1,03})_{24,0}O_{10}(OH,F)_2$	$(K_{0.92}Na_{0.05})(Mg_{2.07}Fe_{0.73}Al_{0.14}Ti_{0.05}Mn_{0.02}Cr_{0.01})_{23.02}(Si_{2.99}Al_{1.01})_{24.0}O_{10}(OH,F)_2$	$(K_{0.92}Na_{0.11})(Mg_{2.04}Fe_{0.79}Al_{0.09}Ti_{0.05}Mn_{0.02}Cr_{0.01})_{23.00}(Si_{2.95}Al_{1.05})_{240}O_{10}(OH,F)_2$	$(K_{0.91}Na_{0.06})(Mg_{2.08}Fe_{0.76}Al_{0.09}Ti_{0.05}Mn_{0.02})_{23.00}(Si_{2.96}Al_{1.04})_{24.0}O_{10}(OH,F)_2$	$(K_{0.91}Na_{0.06})(Mg_{2.04}Fe_{0.77}Al_{0.10}Ti_{0.05}Mn_{0.02}Cr_{0.01})_{22.99}(Si_{2.98}Al_{1.02})_{24.0}O_{10}(OH,F)_2$	$(K_{0,s9}Na_{0,09})(Mg_{2,00}Fe_{0,s2}Al_{0,09}Ti_{0,06}Mn_{0,02})_{22,99}(Si_{2,92}Al_{1,08})_{24,0}O_{10}(OH,F)_2$	$(K_{0,89}Na_{0,07})(Mg_{2.04}Fe_{0,77}Al_{0,09}Ti_{0,05}Mn_{0,03}Cr_{0,01})_{22.99}(Si_{2.96}Al_{1,04})_{24,0}O_{10}(OH,F)_2$	$(K_{0.91}Na_{0.02})(Mg_{2.07}Fe_{0.76}Al_{0.08}Ti_{0.05}Mn_{0.03}Cr_{0.01})_{23.01}(Si_{2.92}Al_{1.08})_{24.0}O_{10}(OH,F)_2$	$K_{0,92}Na_{0,05})(Mg_{2,06}Fe_{0,76}Al_{0,07}Ti_{0,06}Mn_{0,03}Cr_{0,01})_{22,99}(Si_{2,94}Al_{1,06})_{24,0}O_{10}(OH;F)_2$	$(K_{0.90}Na_{0.07})(Mg_{2.06}Fe_{0.76}Al_{0.08}Ti_{0.06}Mn_{0.03}Cr_{0.01})_{23.00}(Si_{2.96}Al_{1.04})_{24.0}O_{10}(OH,F)_2$	$(K_{0.93}Na_{0.02})(Mg_{2.05}Fe_{0.76}Al_{0.10}T_{0.05}Mn_{0.01}Cr_{0.01})_{22.98}(Si_{2.94}Al_{1.06})_{24.0}O_{10}(OH,F)_2$	$K_{0.95}Na_{0.02})(Mg_{1.99}Fe_{0.79}Al_{0.12}T_{0.06}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{2.3.06}(Si_{2.96}Al_{1.04})_{24,0}O_{10}(OH,F)_2$	$(K_{092}Na_{0.06})(Mg_{2.05}Fe_{0.77}Al_{0.09}Ti_{0.05}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{23.00}(Si_{2.95}Al_{1.05})_{24,0}O_{10}(OH,F)_2$	$(K_{0.89}Na_{0.06})(Mg_{2.07}Fe_{0.73}Al_{0.12}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{\Sigma 3.01}(Si_{2.97}Al_{1.03})_{24.0}O_{10}(OH,F)_2$
logopite	Сумма	99.26	96.90	98.31	96.05	96.36	96.29	96.19	96.18	95.98	96.14	95.93	96.89	95.55	96.34	96.39	95.81	95.24	95.46	95.49	96.12	95.89	95.89	96.25	95.39	95.22	95.52	95.83	95.86
the ph	K_2O	10.04	10.17	9.87	96.6	9.75	9.88	9.79	10.03	96.6	9.92	9.89	9.98	10.24	9.58	9.37	9.74	9.64	9.63	9.63	9.42	9.44	9.70	9.83	9.55	9.86	10.00	9.77	9.54
%) of	Na ₂ O	0.36	0.20	0.32	0.30	0.25	0.24	0.29	0.21	0.39	0.14	0.26	0.26	0.26	0.12	0.52	0.38	0.75	0.43	0.43	0.60	0.47	0.15	0.32	0.52	0.12	0.15	0.42	0.45
n (wt.	Cr_2O_3	0.10	0.15	0.26	0.12	0.13	0.08	0.14	0.18	0.15	0.16	0.20	0.11	0.18	0.05	0.03	0.13	0.09	0.08	0.12	0.08	0.13	0.15	0.18	0.17	0.10	0.12	0.19	0.09
ositio	MnO	0.39	0.44	0.36	0.35	0.39	0.30	0.34	0.30	0.50	0.34	0.40	0.44	0.31	0.37	0.49	0.30	0.37	0.32	0.35	0.39	0.38	0.44	0.48	0.51	0.23	0.33	0.34	0.36
al comp	FeO	12.35	13.63	13.46	13.56	13.33	13.52	13.98	13.78	12.78	12.54	12.53	12.76	12.99	12.14	11.69	11.91	12.62	12.21	12.40	13.34	12.57	12.41	12.58	12.29	12.23	12.73	12.51	11.82
Chemic	MgO	18.86	17.91	17.49	17.92	17.90	17.98	17.34	17.59	18.23	18.44	18.65	18.53	18.12	19.22	19.59	18.75	18.33	18.85	18.52	18.16	18.62	18.90	18.77	18.63	18.59	17.90	18.63	18.93
-	Al ₂ O ₃	13.19	13.06	13.77	12.79	13.28	13.56	13.11	13.76	13.23	13.42	13.12	13.29	13.01	13.44	13.09	13.20	12.97	12.99	12.88	13.48	13.06	13.43	13.06	12.79	13.30	13.21	13.09	13.25
	TiO2	0.97	1.13	1.21	1.47	1.16	1.28	1.33	1.12	0.94	0.90	1.01	1.16	1.07	0.93	0.83	0.85	0.91	0.96	0.92	1.16	1.00	0.96	1.02	1.03	0.93	1.06	0.88	1.03
	SiO_2	40.10	40.21	39.44	39.55	40.17	39.73	39.87	39.21	39.68	40.28	39.97	40.26	39.37	40.49	40.80	40.55	39.56	39.99	40.24	39.49	40.22	39.77	40.01	39.88	39.72	39.79	39.90	40.39
	№ ан.	1a	1b	1c	2 d	2e	2f	2g	3 a	3b	3c	4 d	4e	4f	5a	5b	5c	5d	5e	6 <i>f</i>	6g	7a	q_L	7c	7d	9e	f_{ℓ}	9g	h6

МИНЕРАЛОГИЯ 3(4) 2017

Эмпирические формулы на 7 катионов (Y+Z)	$\left (K_{0.90} Na_{0.08}) (Mg_{2.09} Fe_{0.73} Al_{0.11} Ti_{0.06} Mn_{0.02} Cr_{0.01})_{23.02} (Si_{2.96} Al_{1.04})_{24.0} O_{10} (OH,F)_2 Na_{10} Ch_{10} (Na_{10})_{24.0} Na_{10} (Na_{10})_{24.0} Na_{10} (Na_{10})_{24.0} Na_{10} (Na_{10})_{24.0} Na_{10} Na_{10} (Na_{10})_{24.0} Na_{10} Na_{10} (Na_{10})_{24.0} Na_{10} Na_$	$\left (K_{093}Na_{0.08})(Mg_{2.06}Fe_{0.74}Al_{0.11}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{23.00}(Si_{2.93}Al_{1.07})_{24.0}O_{10}(OH,F)_2 \right \\$	$\left (K_{092}Na_{0,07})(Mg_{2,05}Fe_{0,75}Al_{0,11}Ti_{0,06}Mn_{0,02}Cr_{0,01})_{22,99}(Si_{2,97}Al_{1,03})_{24,0}O_{10}(OH,F)_2 \right \\$	$\left[(K_{0.90}Na_{0.06})(Mg_{2.04}Fe_{0.76}Al_{0.09}Ti_{0.06}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{22.99}(Si_{2.92}Al_{1.08})_{24.0}O_{10}(OH,F)_2\right]$	$\left (K_{0.89} Na_{0.02}) (Mg_{2.07} Fe_{0.78} Al_{010} Ti_{0.05} Mn_{0.02} Cr_{0.01})_{\Sigma 3.03} (Si_{2.98} Al_{1.02})_{240} O_{10} (OH, F)_2 \right \\$	$\left[(K_{0.90}Na_{0.03})(Mg_{2.02}Fe_{0.77}Al_{0.12}Tl_{0.06}Mn_{0.01}Cr_{0.01}Ni_{0.01})_{23.00}(Si_{2.98}Al_{1.02})_{24.0}O_{10}(OH,F)_2\right]$	$\left (K_{0.85}Na_{0.10})(Mg_{2.06}Fe_{0.75}Al_{0.11}Ti_{0.07}Mn_{0.02})_{23.01}(Si_{2.96}Al_{1.04})_{24.0}O_{10}(OH,F)_2 \right \\$	$\left[(K_{0.88}Na_{0.05})(Mg_{2.09}Fe_{0.71}Al_{0.10}Ti_{0.06}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{22.99}(Si_{2.96}Al_{1.04})_{24.0}O_{10}(OH,F)_2\right]$	$[(K_{0,93}Na_{0.08})(Mg_{2,01}Fe_{0.75}Al_{0.13}Ti_{0.07}Mn_{0.03}Cr_{0.01}Ni_{0.01})_{23,01}(Si_{2,99}Al_{1,01})_{24,0}O_{10}(OH,F)_{24,0}O_{10$	$\left[(K_{0.90}Na_{0.08})(Mg_{2.09}Fe_{0.73}Al_{0.10}Ti_{0.06}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{23.02}(Si_{2.95}Al_{1.05})_{24.0}O_{10}(OH,F)_2\right]$	$\left[(K_{0.92}Na_{0.05})(Mg_{2.03}Fe_{0.78}Al_{0.09}Tl_{0.07}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{23.01}(Si_{2.95}Al_{1.05})_{24.0}O_{10}(OH,F)_2\right]$	$\left (K_{092}Na_{005})(Mg_{2.06}Fe_{0.75}Al_{012}Ti_{0.05}Mn_{0.02})_{23.00}(Si_{2.98}Al_{1.02})_{24.0}O_{10}(OH,F)_2 \right \\$	$\left[(K_{0.89}Na_{0.06})(Mg_{2.08}Fe_{0.75}Al_{0.08}Ti_{0.05}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{23.00}(Si_{2.92}Al_{1.08})_{24.0}O_{10}(OH,F)_2\right]$	$\left (K_{094}Na_{0.07})(Mg_{2.08}Fe_{0.73}Al_{0.08}Ti_{0.06}Mn_{0.02})_{22.97}(Si_{294}Al_{1.06})_{24.0}O_{10}(OH_{1.47}F_{0.53})_{10.53})_{10.53}(Si_{294}Al_{1.06})_{10.55}(Si_{294}A$	$\left (K_{092}Na_{0.05})(Mg_{2.10}Fe_{0.74}Al_{0.06}Ti_{0.06}Mn_{0.02}Ni_{0.01})_{22.99}(Si_{2.94}Al_{1.06})_{24,0}O_{10}(OH_{1.49}F_{0.51}) \right \\$	$\left (K_{092}Na_{0.05})(Mg_{2.10}Fe_{0.73}Al_{0.07}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{22.99}(Si_{2.93}Al_{1.07})_{24,0}O_{10}(OH_{1.47}F_{0.53}) \right \\$	$\left (K_{095}Na_{0.02})(Mg_{2.06}Fe_{0.75}Al_{0.12}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{23.02}(Si_{3.01}Al_{0.99})_{24,0}O_{10}(OH_{1.42}F_{0.58}) \right \\$	$\left (K_{093}Na_{0.02})(Mg_{2.06}Fe_{0.79}Al_{0.06}Ti_{0.06}Mn_{0.02}Cr_{0.01})_{23.01}(Si_{2.92}Al_{1.08})_{24.0}O_{10}(OH,F)_2 \right \\$	$\left[(K_{0,91}Na_{0,09})(Mg_{2,01}Fe_{0,79}Al_{0,08}Ti_{0,08}Mn_{0,02}Cr_{0,01}Ni_{0,01})_{23,00}(Si_{2,92}Al_{1,08})_{24,0}O_{10}(OH,F)_2\right]$	$\left[(K_{0.88}Na_{0.11})(Mg_{2.14}Fe_{0.68}Al_{0.09}Ti_{0.05}Mn_{0.02}Cr_{0.01}Ni_{0.01})_{23.00}(Si_{2.94}Al_{1.06})_{24.0}O_{10}(OH,F)_2\right]$	$\left (KNa_{0.08})(Mg_{2.18}Fe^{2+}Fe^{3+}_{0.61}Fe^{3+}_{0.13}Ti_{0.05}Mn_{0.03})_{53.01}(Si_{2.85}Al_{1.14}Fe^{3+}_{0.01})_{54.0}O_{10}(OH)_{0.84}F_{0.36}_{0.36} \right \\$	$^{-202}$ М, аналитик В.А. Котляров. $^{*)}$ В ан. $1a, 1c, 11a, 11b, 11c, 11d$ содержание	к И.А. Блинов; Н ₂ О – расчёт). Б-1 – химический анализ суммарной пробы; в	Малярёнок). Пустая клетка – не анализировано.	: V.A. Kotlyarov. *)In analyses 1a, 1c, 11a, 11b, 11c, 11d contents of F 2.36, 2.13,	calculated). B-1 is chemical analys of total sample; sum include Fe ₂ O ₃ 2.49, CaO
Сумма	95.73	95.89	96.09	95.67	96.20	96.14	95.10	95.27	95.64	95.72	96.49	96.60	95.92	98.23	98.07	97.99	98.37	96.46	95.67	96.00	99.32	AMME	аналити	a, M.H.	, analyst	$: H_2O$ is
$\rm K_2O$	9.57	9.86	9.74	9.51	9.54	9.59	8.99	9.39	9.77	9.57	9.84	9.73	9.51	9.94	9.79	9.78	10.09	9.93	9.64	9.39	10.62	COM	ga 3, .	мёнов	202M	Blinov
Na_2O	0.55	0.54	0.52	0.42	0.14	0.19	0.67	0.37	0.58	0.55	0.38	0.34	0.42	0.52	0.36	0.34	0.16	0.12	0.63	0.78	0.58	c. 5 <i>6</i> ;	can Ve	.B. Ce	MMA.	t I.A.
Cr_2O_3	0.10	0.12	0.12	0.12	0.09	0.18	0.06	0.14	0.13	0.10	0.10	0.03	0.09	0.08	0.08	0.14	0.17	0.16	0.17	0.13		см. ри	io (Tes	гики Т	66; PЭ	analys
MnO	0.29	0.31	0.32	0.39	0.34	0.23	0.28	0.35	0.41	0.29	0.31	0.30	0.31	0.38	0.25	0.33	0.33	0.26	0.29	0.38	0.46	3 1-12	CTBCHH	анали	1 Fig. 5	/ega 3,
FeO	11.78	11.98	12.21	12.33	12.63	12.52	12.17	11.52	12.13	11.78	12.62	12.10	12.20	11.84	12.05	11.94	12.09	12.86	12.73	11.17	9.91	участкоі	o, cootbe	Mac. % (shown ii	Tescan V
MgO	18.99	18.68	18.63	18.58	18.97	18.45	18.66	19.06	18.06	18.99	18.55	18.76	19.05	18.94	19.18	19.21	18.67	18.91	18.16	19.58	19.87	IЬНОСТЬ	Э мас. %	=0 ₂ 0.64	1–12 is	rdingly (
Al_2O_3	13.23	13.55	13.11	13.42	13.00	13.20	13.16	13.11	13.01	13.23	13.18	13.14	13.42	13.25	12.97	13.13	12.75	13.19	13.23	13.27	13.19	едовател	.27, 2.4	0.05, -F=	of areas	%, acco
TiO_2	1.01	1.06	1.09	1.09	0.89	1.09	1.17	1.05	1.23	1.01	1.24	0.88	0.97	1.13	1.13	1.00	1.00	1.11	1.40	0.95	0.84	. После	2, 2.2, 2), CaO (quence	49 wt.
SiO_2	40.08	39.71	40.35	39.65	40.62	40.55	39.94	40.17	40.22	40.08	40.10	40.32	39.78	39.83	40.06	39.85	40.62	39.92	39.30	40.14	38.72	імечание	2.13, 2.32	$e_2O_3 2.45$	e. The se	2, 2.27, 2.
№ ан.	9i	9j	8 <i>a</i>	8b	8c	8d	8e	10f	10g	10h	10i	10j	10k	11a	11b	11c	11d	12e	12f	12g	B-1	$\eta d \Pi$	F 2.36, 1	cymme F	Not	2.32, 2.2

Окончание таблицы 2

МИНЕРАЛОГИЯ **3**(4) 2017

0.05, and -F=O, 0.64 wt. % (analysts T.V. Semenova and M.N. Malyarenok). Blank cell - not determined.

Рис. 6. Вариации содержаний Fe и Mg (к.а.ф.) в зонах роста $\langle 010 \rangle$ и $\langle 110 \rangle$ кристалла флогопита Булдымского месторождения.

Fig. 6. Variations of Fe and Mg (cf.f.) contents in the $\langle 010 \rangle$ and $\langle 110 \rangle$ growth zones of the phlogopite crystal of the Buldym deposit.

невых и зелёных флогопитах из флогопит-рихтеритовых и флогопитовых метасоматитов содержание FeO + Fe₂O₃ $\approx 8.7-9.4$ мас. %, в зелёных флогопитах из доломит-кальцитовых карбонатитов ~ 14 мас. %, а в красновато-коричневых тетраферрифлогопитах из доломит-кальцитовых карбонатитов $\sim 12-13$ мас. %, что заметно выше данных В.Я. Левина с соавторами. Возможно, что материал проанализированных «валовых» проб не всегда был мономинеральным, т. к. даже в крупных пластинах флогопита отмечались мелкие включения магнетита, пирита, пирротина, кальцита, доломита (Левин и др., 1987) и гематита (Недосекова, 2007), а также апатита, полевых шпатов, циркона и пирохлора (наши данные).

Полученные нами результаты анализов флогопита приведены в таблице 2, где участки 1–4, 6, 8 характеризуют последовательные зоны роста пинакоида (010), а участки 5, 7, 9–12 – зоны призмы (110), причём участки 4, 6, 8 пинакоида соот-

Рис. 7. Соотношение содержаний MgO, FeO_{общ.} и Al_2O_3 (в отн. % от их суммы = 100 %) в составе флогопита из жил в Булдымском массиве на диаграмме для слюд из карбонатитов и фенитов (*no* Le Bas, Srivastava, 1989).

1 – из флогопит-амфиболовых метасоматитов, 2 – из флогопитовых метасоматитов, 3 – из доломит-кальцитовых карбонатитов, 4 – из доломитовых карбонатитов, 5*a* – группа зон исследованного кристалла флогопита и суммарная его проба (5*b*); 6 – область составов слюд в магматических карбонатитах; 7 – область составов слюд, отмечавшихся в карбонатитах; 8 – составы слюд большинства магматических и метаморфических пород.

Fig. 7. Correlation of MgO, FeO_{sum} and Al₂O₃ contents (in % relative of them sum = 100 %) in the phlogopite viens from Buldym deposit on the diagram for mica in carbonatite and phenite (by Le Bas, Srivastava, 1989).

ветствуют участкам 5, 7 и 10 призмы (см. рис. 5б). В разных зонах вариации содержаний составили, мас. %: Аl₂O₃ 12.79-13.77, MgO 17.34-19.59, FeO 11.17-13.98 с типичной для слюд серии аннит-флогопит обратной корреляцией Mg и Fe (рис. 6). Светлоокрашенные зоны, как правило, более магнезиальные и менее железистые по сравению с тёмными более железистыми (и с несколько бо́льшими содержаниями TiO₂). Вариации содержаний фтора, определённые в шести разных зонах флогопита, составили 2.13-2.46 мас. %. Все анализы разных зон роста исследованной пластины слюды отвечают железистому флогопиту (см. табл. 2). В химическом составе исследованной тонкой пластины флогопита после вырезания участков 1–12 (см. рис. 5б) стандартным силикатным анализом определены близие к микрозондовым содержания Al₂O₂, MgO и суммы FeO_{обш}, включаяющей Fe₂O₃ 2.49 мас. %, а содержания SiO₂ и F – немного ниже (см. табл. 2, ан. Б-1).

Обсуждение результатов и выводы

Химический состав последовательных зон роста кристалла флогопита Булдымского массива, определённый электронно-зондововым методом, несколько отличается от ранее опубликованных данных химического (силикатного) анализа слюд из жил и пород разных участков массива, в том числе и из керна скважин колонкового бурения. Так, содержания MgO в исследованных зонах флогопита близки данным, приведённым Э.М. Бонштед-Куплетской (1951) и В.Я.Левиным с соавторами (1987), и меньше, чем в других работах (Токмаков, Замураева, 1963; Недосекова, 1988, 2007). Суммарное содержание оксидов железа в зонах кристалла флогопита несколько выше, чем опубликованные результаты «валовых» проб флогопита и тетраферрифлогопита (Недосекова, 2007). Возможно, это обусловлено как разными методами анализа, так и различием материала проб из жил и пород в разных участках Булдымского массива, в том числе и из керна скважин колонкового бурения.

Состав разных зон роста исследованной пластины слюды отвечают железистому флогопиту с обратной корреляцией Mg и Fe (см. рис. 6), типичной для слюд группы аннит–флогопит (Минералы, 1992). На тройной диаграмме соотношений MgO, FeO_{общ} и Al₂O₃ в отн. % от их суммы = 100 % (Le Bas, Srivastava, 1989) вариации состава зон исследованного флогопита Булдымского массива локализованы в области состава слюд, наиболее часто встречавшихся в карбонатитах (рис. 7), и несколько отличаются от ранее приведённых данных (Недосекова, 2007) повышенными содержаниями FeO_{общ} и меньшими – MgO.

Литература

Амеландов А.С., Озеров К.Н. (1934) Булдымское месторождение вермикулита. *Минеральное сырьё*, **2**, 19–28.

Баженов А.Г., Недосекова И.Л. (1993) Фторрихтерит Na₂Ca(Mg,Fe)₅[Si₈O₂₂] (F,OH)₂ – новый минеральный вид в группе амфиболов. *Записки Всесоюз. мин. об-ва*, **122**(3), 98–102.

Белов В.В. (1936ф) Булдымское месторождение вермикулита в районе Вишнёвых гор на Среднем Урале (геологическое описание и промышленная оценка). Свердловск, Уральский НИИ геологии, разведок и исследования минерального сырья, 441 с.

Белов В.В. (1937) Монацит из района Вишнёвых гор. Записки Всесоюз. мин. об-ва, **66**(4), 648–650.

Бонштедт-Куплетская Э.М. (1951) Минералогия щелочных пегматитов Вишнёвых гор. М.: АН СССР, 176 с. (и 17 Приложений)

Зайцев А.М. (1884) Геологический очерк Кыштымской и Каслинской дач в Среднем Урале. *Труды общества естествознания Казанского ун-та*, **13**(3), 1–38.

Казанцев В.П. (1934ф). О структуре и свойствах вермикулита. Свердловск, Институт прикладной минералогии, 33 с.

Лебедева И.О., Недосекова И.Л. (1993) О процессе эшинитизации пирохлора из карбонатитов Булдымского массива (Вишнёвые горы, Урал). Записки Всесоюз. мин. об-ва, **122** (2), 69–75.

Левин В.Я. (1974) Щелочная провинция Ильменских-Вишнёвых гор (формации нефелиновых сиенитов Урала). М., Наука, 222 с.

Левин В.Я., Левина И.А., Глебова З.М., Должанская Т.Ю. (1987) Минералогия карбонатитов Булдымского массива Вишнёвых гор / Минералы месторождений Урала. Свердловск, УНЦ АН СССР, 117–123.

Левин В.Я., Роненсон Б.М., Самков В.С., Сергеев Н.С., Киселёв А.П., Левина И.А. (1997) Щёлочно-карбонатитовые комплексы Урала. Екатеринбург: Уралгеолком, 274 с.

Минералы. Справочник (1992). М., Наука, 4(1), 599 с.

Недосекова И.Л. (1986) Щелочные метасоматиты и карбонатиты в Булдымском гипербазитовом массиве / Новые и малоизученные минералы и минеральные ассоциации Урала. Свердловск, УНЦ АН СССР, 48–49.

Недосекова И.Л. (1988) Породообразующие минералы щелочных метасоматитов и карбонатитов Булдымского гипербазитового массива (Вишнёвые горы) / Материалы к минералогии рудных районов Урала. Свердловск, УрО АН СССР, 52–61.

Недосекова И.Л. (2007) Новые данные по карбонатитам Ильмено-Вишневогорского комплекса (Ю. Урал, Россия). *Геология рудных месторождений*, **49**(2), 146–164.

Недосекова И.Л., Белоусова Е.А., Беляцкий Б.В. (2014) U-Pb-возраст и Lu-Hf изотопные системы цирконов Ильмено-Вишневогорского щёлочно-карбонатитового комплекса. *Литосфера*, (5), 19–32.

Недосекова И.Л., Владыкин Н.В., Прибавкин С.В., Баянова Т.Б. (2009) Ильмено-Вишневогорский миаскит-карбонатитовый комплекс: происхождение, рудоносность, источники вещества (Урал, Россия). *Геоло*гия рудных месторождений, **51**(2), 157–181.

Николаев А.В. (1912) К минералогии Кыштымского горного округа. Минералы Кыштымской и Каслинской дач. *Труды геологического музея им. Петра Великого*, **6**(7), 171–231. **Роненсон Б.М.** (1966) Происхождение миаскитов и связь с ними редкометального оруденения. *Геология месторождений редких элементов*, **28**, 174 с.

Свяжин Н.В. (1966) Доломитовые карбонатиты Вишневогорского комплекса ультраосновных и щелочных пород. Известия АН СССР, сер. геол., (5), 65–72.

Токмаков П.П., Замураева М.Г. (1963) О генезисе Булдымского месторождения вермикулита. Магматизм, метаморфизм, металлогения Урала. Тр. І-го Уральского петрограф. совещ., том 1. Свердловск, 359–370.

Le Bas M.J., Srivastava R.K. (1989) The mineralogy and geochemistry of the Mundwava carbonatite dykes, Sirohi District, Rajasthan, India. *Neues Jahrbuch für Mineralogie. Abhandlungen*, **160**(2), 207–227.

References

Amelandov A.S. and Ozerov K.N. (1934) [Buldym deposit of vermiculite]. *Mineralnoe syrye [Mineral raw materials]*, 2, 19–28. (in Russian)

Bazhenov A.G., Nedosekova I.L. (1993) [Fluororichterite $Na_2Ca(Mg,Fe)_5[Si_8O_{22}](F,OH)_2$ a new mineral species on the amphibole group]. *Zapiski VMO [Proceedings of Allunion Mineralogical Society]*, **122**(3), 98–102. (in Russian)

Belov V.V. (1936 ϕ) [Buldym deposit of vermiculite from district Vishnevy Mountains on Central Urals (geological description and industrial estimation)]. Sverdlovsk, Uralsky NII of the geology, services and research of mineral raw material, 441 p. (in Russian)

Belov V.V. (1937) [Monazite from district Vishnevye Mountains[. *Zapiski VMO [Proceedings of All-union Mineralogical Society]*, **66**(4), 648–650. (in Russian)

Bonstedt-Kupletskaya E.M. (1951) [Mineralogy of alkaline pegmatites of the Vishnevy Mountains]. Moskow, AN SSSR, 176 p. (and 17). (in Russian)

Kazantsev V.P. (1934 ϕ). [About a structure and properties of vermiculite]. Sverdlovsk, Institute of the Applied Mineralogy, 33 p. (in Russian)

Lebedeva I.O., Nedosekova I.L. (1993) [About a process aeshynitization of pyrochlore from karbonatite Buldym massif (Vishnevy Mountains, Ural)]. *Zapiski VMO [Proceedings of All-union Mineralogical Society*], **122** (2), 69–75. (in Russian)

Levin V.Ya. (1974) [Alkaline Province of the Ilmensky– Vishnevy Mountains]. Moskow, Nauka, 223 p. (in Russian)

Levin V.Ya., Levina I.A., Glebova Z.M., Dolzhanskaya T.Yu. (1987) [Mineralogy of carbonatite of the Buldym massif, Vishnevy Mountains]. *Mineraly mestorozhdeniy Urala [Minerals of the deposits on Urals]*. Sverdlovsk, UNC AN SSSR, 117–123. (in Russian)

Levin V.Ya., Ronenson B.M., Samkov V.S., Sergeev N.S., Kiselev A.P., Levina I.A. (1997) [Alkaline-carbon-

Minerals. Handbook (1992). M, Nauka, 4(1), 599 c. (in Russian)

Nedosekova I.L. (1986) [Alcaline metasomatite and carbonatite in the Buldym ultramafic massif]. *Novye i maloizuchennye mineraly i mineralnye assoziazii [New and barely minerals and mineral association of Ural].* Sverdlovsk, UNC AN SSSR, 48–49. (in Russian)

Nedosekova I.L. (2007) [New data for carbonatie Ilmeny–Vishnevogorsky complex (Southern Urals, Russia)]. *Geologiya rudnych mestorozhdeniy [Geology of ore deposits]*, **49**(2), 146–164. (in Russian)

Nedosekova I.L. (1988) [Rock-forming minerals of the alcaline metasomatite and carbonatite in the Buldym ultramafic massif]. *Materialy k mineralogii rudnych mestorozhdeniy Urala [Materials for Mineralogy of Ore Deposits]*. Sverdlovsk, UB AN SSSR, 52–61. (in Russian)

Nedosekova I.L., Belousova E.A., Belyatsky B.V. (2014) [U-Pb-ages and Lu-Hf isotope systems of zircons in Ilmeno-Vishnevogorsky complex (Southern Urals]. *Litos-fera [Lithosphere]*, (5), 19–32. (in Russian)

Nedosekova I.L., Vladykin N.V., Pribavkin S.V., Bayanova T.B. (2009) [The Ilmeno-Vishnevogorsky miaskite-carbonatite complex: origin, ore content, sources of matter (Ural, Russia)]. *Geologia rudnych mestorozhdeniy* [Geology of ore deposits], **51**(2), 157–181. (in Russian)

Nikolaev A.V. (1912) [To the mineralogy of the Kyshtym mountain district1. Minerals of the Kyshtym and Kasli dachas]. *Trudy Geol. Muzeya Acad. Nauk.* [Proceedings of Academy of Sciences], 6, 218–221. (in Russian)

Ronenson B.M. (1966) [The origin of miaskites and the connection with them of rare metal mineralization]. *Geologiya mestorozhdeniy redkikh elementov [Geology of the rare elements deposits]*. Moskow, Nedra,, 173 p. (in Russian)

Svyazhin N.V. (1966) [Dolomite carbonatites of the Vishnevogorsky complex of ultrabasic and alkaline rocks]. *Izvestiya AN* SSSR. Seria geologicheskaya [Proceedings of the USSR Academy of Sciences. Geological series], 5, 65–72. (in Russian)

Tokmakov P.P., Zamuraeva M.G. (1963) [By genesis of Buldym deposit of vermiculite]. *Magmatizm, metamorfizm, metallogeniya Urala. Trudy 1-go Ural. petrogfaf. sovetshania [Magmatism, metamorphism, metallogeny of Ural. Proceedings of the 1st Ural petrographic meeting, vol. 1].* Sverdlovsk, 359–370. (in Russian)

Zaytsev A.M. (1884) [Geological sketch of the Kyshtym and Kasli dachas in the Middle Urals]. *Trudy Ob* tshestva estestvoznaniya Kazanskogo universiteta [Proceedings of the Society of Natural History of Kazan Universit]y, 13(3), 1–38. (in Russian)

Поступила в редакцию 20 декабря 2017 г.