УДК 549.6 (470.55)

КОНЦЕНТРИЧЕСКИ-ЗОНАЛЬНЫЙ АГРЕГАТ РЕДКОЗЕМЕЛЬНЫХ МИНЕРАЛОВ В ПОЛЕВОШПАТОВОМ ПЕГМАТИТЕ ВИШНЁВЫХ ГОР НА ЮЖНОМ УРАЛЕ

В.А. Попов

Институт минералогии УрО РАН, г. Миасс, Челябинская обл., 456317 Россия; popov@mineralogy.ru

CONCENTRIC-ZONAL AGGREGATE OF REE MINERALS IN FELDSPAR PEGMATITE OF THE VISHNEVYE MOUNTAINS, SOUTH URALS

V.A. Popov

Institute of Mineralogy UB RAS, Miass, Chelyabinsk district, 456317, Russia; popov@mineralogy.ru

В одном из щелочных пегматитов Вишнёвых гор встречена концентрически-зональная текстура минерального агрегата, образовавшаяся в результате кристаллизации расплавараствора в закрытой системе. Сначала выросли редкие крупные кристаллы монацита-(Се), создавшие вокруг себя волновые концентрационные поля. На заключительном этапе роста монацита кристаллизовался эвтектический агрегат редкометалльно-редкоземельных минералов: алланита-(Се), бастнезита-(Се), дингдаохенгита-(Се), тороэшинита, апатита-(СаF), а также циркона, кальцита и других минералов. На завершающей стадии кристаллизации по объему преобладали полевые шпаты (синтаксические сростки альбита с калишпатом). Такой ход кристаллизации представляется необычным: сначала расплав-раствор (магма) по составу был фосфатно-силикатным, а к концу кристаллизации – силикатным.

Илл. 5. Табл. 1. Библ. 5.

Ключевые слова: монацит-(Се), редкометалльно-редкоземельные минералы, щелочные пегматиты, диссипативные текстуры, Вишнёвые горы, Южный Урал.

A concentric-zonal texture of mineral aggregate observed in alkali pegmatite of the Vishnevye Mountains was formed as a result of melt-fluid crystallization in a closed system. At the first stage, rare large monazite crystals were crystallized creating wave concentration fields. Allanite-(Ce), bastnäsite-(Ce), chevkinite-(Ce), thoroaeschinite, apatite-(CaF), zircon, calcite and other minerals crystallized in the end of the monazite growth. Feldspars (syntactic intergrowths of albite with K-feldspar) were dominant in the final stage of crystallization. The change in the composition of melt-fluid (magma) from phosphate-silicate to silicate is atypical.

Figures 5. Table 1. References 5.

Key words: monazite-(Ce), rare metal and rare-earth minerals, alkali pegmatites, dissipative textures, Vishnevye Mountains, South Ural.

Введение

Концентрически-зональные минеральные агрегаты распространены во многих природных объектах различного генезиса (Жабин, 1979; Повилайтис, 1990; Попов, 2011), тогда как агрегаты нескольких редкоземельных (РЗЭ) минералов встречаются сравнительно редко. В северной части Вишнёвых гор такие агрегаты описаны А.Г. Жабиным и Н.В. Свяжиным (1962) как метасоматические. По-видимому, здесь же подобные агрегаты наблюдались А.Г. Баженовым в 1970 г. в полевошпатовом пегматите, секущем биотитовые миаскиты г. Долгой в карьере жилы № 35 Вишнёвых гор. Не-

Рис. 1. Концентрически-зональные агрегаты РЗЭ минералов в сложном полевошпатовом пегматите на контакте с брекчированными миаскитами.

Fig. 1. Concentric-zonal aggregates of REE minerals in complex feldspar pegmatite at the contact with brecciated miaskites.

большой образец пегматита с крупными выделениями монацита долго хранился в его частной коллекции. В 2005 г. А.Г. Баженов передал его автору для возможного изучения. В 2018 г. из небольшой части образца изготовлен препарат для оптических и микрозондовых исследований. Состав минералов определен на сканирующем электронном микроскопе SEM TESCAN Vega 3 с энергодисперсионной приставкой (аналитик И.А. Блинов, ИМин УрО РАН). Целью статьи является генетическая интерпретация концентрически-зонального агрегата РЗЭ минералов.

Строение пегматитового агрегата

В образце пегматита преобладает светлый альбит-калишпатовый агрегат с включениями темных концентрически-зональных «овоидов», центральная часть которых образована крупным монокристаллом коричневого монацита ~1.5 см, а периферическая – мелкозернистыми агрегатами полевых шпатов и апатита, которые постепенно сменяются темным полиминеральным агрегатом (рис. 1). Тела концентрически-зональных агрегатов локализованы на контакте пегматита с миаскитами и окружены полевошпатовым агрегатом. В зерне монацита на его периферии в виде зоны присутствует много мелких вростков полевых шпатов и апатита, среди которых наблюдаются и зерна полиминерального темного агрегата следующей зоны (рис. 2). Темный полиминеральный агрегат образован сросшимися зернами алланита-(Се), тороэшинита, дингдаохенгита-(Се), бастнезита-(Се), монацита-(Се), биотита, фторапатита, кальцита, калиевого

Рис. 2. Строение концентрически-зонального агрегата.

Аншлиф. Косое освещение. *Fig. 2.* Structure of the concentric-zonal aggregate. Polished section. Oblique light.

полевого шпата, альбита, мусковита и циркона (рис. 3, 4). Между всеми минералами в плоском сечении наблюдаются индукционные границы совместного одновременного роста, что позволяет их отнести к единому парагенезису. По строению агрегата в этом парагенезисе можно наметить следующую последовательность кристаллизации минералов от начала к концу процесса (по объему): монацит \rightarrow (весь набор минералов) \rightarrow синтаксические сростки калиевого полевого шпата с альбитом (рис. 4).

Рис. 3. Минеральный агрегат темной зоны вокруг индивида монацита.

Вt – биотит, Ap – апатит, Aes – эшинит, Mnz – монацит, Cal – кальцит, Alb – альбит, Fls – калишпат, Aln – алланит, Zr – циркон. o, s, t, u, v – точки анализов в таблице. BSE фото.

Fig. 3. Mineral aggregate of the dark zone around monazite.

Bt-biotite, Ap-apatite, Aes-aeschynite, Mnz-monazite, Cal-calcite, Abl-albite, Fls-K-feldspar, Aln-allanite, Zr-zircon. o, s, t, u, v - points of analyses in TableBSE image.

Рис. 4. Строение минерального агрегата в узком сечении темной зоны от зерна монацита (внизу) до альбит-калишпатового агрегата (вверху).

BSE фото.

Fig. 4. Structure of mineral aggregate in a narrow section of the dark area from the monazite grain (bottom) to albite–K-feldspar aggregated (top).

BSE image.

Характеристика минералов

Монацит-(Се) – самый ранний минерал пегматитового тела. Его индивиды размером до 1.5 см субизометричны, имеют коричневый цвет, совершенную спайность (рис. 2) и относительно однородны с преобладанием в составе Се, La и P при низких содержаниях прочих РЗЭ, Ca и Si (табл.). В окружающем полиминеральном агрегате встречаются мелкие индивиды монацита (рис. 3), состав которых близок составу крупного индивида.

Алланит-(Се) составляет самую значительную часть темной зоны, окружающей крупные индивиды монацита. Таблитчатые индивиды алланита-(Се) неоднородны (табл., рис. 3). В химическом составе минерала отмечаются несколько повышенные содержания Na.

Дингдаохенгит-(Се) образовал небольшие редкие черные зерна в общей темной зоне вокруг монацита. Визуально трудно различим. В отраженных электронах выглядит более светлым, чем алланит-(Се), но темнее эшинита. Встречается в срастании с алланитом-(Се) (рис. 3). Минерал отличается значительным содержанием A1 (табл.). Подобный состав известен в «орточевкините» из месторождения Итронгэ (Минералы, 1972, с. 791– 792).

Тороэшинит (эшинит-(Се) с преобладанием Th) является еще одним черным минералом в

Рис. 5. Метасоматические изменения вдоль трещин в зерне эшинита-(Се) и субграфические срастания эшинита-(Се) с алланитом-(Се) (слева вверху).

BSE фото.

Fig. 5. Hydrothermal alteration of aeschynite-(Ce) grain along the cracks and graphic intergrowths of aeschynite-(Ce) with allanite-(Ce) (top left).

BSE image.

темной зоне агрегата. Его зерна мелкие и субизометричные. В некоторых зернах видны трещины и метасоматические изменения вдоль них (рис. 5). Встречаются мелкие субграфические срастания эшинита с алланитом-(Се). В измененных участках фиксируется уменьшение содержаний РЗЭ и Nb, увеличение содержаний Са и появляется значительный дефицит суммы компонентов (табл.).

Бастнезит-(Се) встречен в виде очень мелких зерен в алланите-(Се) и других минералах. Редко бастнезит приурочен к трещинам, но невозможно однозначно отнести его к поздним минералам. Содержание оксидов Се и La в нем сопоставимо с таковым в монаците-(Се), но в составе бастнезита-(Се) определено 7.5 мас. % F и меньше Th (табл.).

Биотит (аннит-сидерофиллит?) $K_{0.94}Mg_{0.25}Mn_{0.05}$ Fe_{1.92}Ti_{0.14}Al_{1.69}(Si_{2.64}Al_{0.36})O₁₀(OH)₂ широко развит в виде мелких индивидов, таблитчатых или субизометричных зерен в темной зоне концентрически-зонального агрегата. Поверхности зерен биотита относятся к классу индукционных, частично измененных вследствие пластических деформаций. Несмотря на присутствие синхронных фторапатита и бастнезита-(Ce), биотит не содержит заметных количеств F.

Апатит-(CaF) (фторапатит) преимущественно развит в ближней к монациту зоне мелкозернистого агрегата и визуально заметен по более сильному блеску. Его зерна бесцветны и субизометричны.

Таблица

Химический состав (мас. %) монацита-(Се) и минералов в концентрически-зональном агрегате щелочного пегматита горы Долгой

Table

Chemical composition (wt. %) of monazite-(Ce) and minerals of concentric-zonal aggregate of alkali pegmatite of Mt. Dolgaya

№ ан.	F	P_2O_5	Na ₂ O	CaO	MgO	FeO	Al ₂ O ₃	TiO ₂	SiO ₂	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	ThO ₂	Сумма
1a	-	29.29	_	0.26	_	_	-	_	0.65	27.13	33.43	2.51	4.59	2.84	100.71
2b	-	28.92	_	0.29	_	_	-	_	0.74	26.20	33.64	2.68	4.67	2.86	100.00
3c	-	29.09	_	0.33	_	—	-	_	0.67	26.21	32.57	2.10	4.89	3.26	99.12
4d	-	28.55	_	0.38	_	—	-	_	0.76	26.31	33.04	2.83	4.96	3.17	100.00
50	-	29.69	_	-	_	—	-	_	0.77	26.13	32.91	3.24	5.09	2.16	99.99
6e	4.12	40.09	0.77	49.87	_	—	-	_	_	1.20	2.46	-	0.87	-	99.38
7g	-	-	1.08	8.79	0.67	11.48	17.39	0.52	31.35	10.53	14.10	1.44	1.58	0.25	99.99
8h	-	-	1.12	9.44	0.42	10.68	18.61	0.49	33.01	9.94	12.64	1.06	1.97	0.49	99.87
9v	-	-	0.81	8.76	0.64	11.48	17.78	0.60	31.07	10.36	13.80	0.71	1.98	0.29	98.98
10u	-	-	_	3.68	_	5.95	5.33	18.09	20.46	17.03	22.64	-	3.37	1.02	97.57
11s	-	-	_	0.59	_	0.26	-	32.79	_	3.99	12.40	1.87	5.13	28.15	100.0
12t	-	-	_	2.57	_	—	-	31.18	_	4.16	11.07	1.24	4.05	26.53	92.77
13i	7.50	-	_	_	_	_	-	_	_	27.3	34.73	3.40	5.49	0.43	78.86
Эмпирические формулы															
$1a - (Ce_1, La_2, Nd_2, Pr_2, Th_2, Ca_2) - (P_2, Si_2)O_2$															
$\frac{2b - (Ce_{0.48} - m_{0.39} + m_{0.06} - m_{0.04} + m_{0.03} - m_{0.01}) \sum_{1.01} (1 - 0.97 - m_{0.03}) - 4}{2b - (Ce_{0.48} - m_{0.03} - m_{0.03} - m_{0.03}) - 1 - (Ce_{0.04} - m_{0.03} - m_{0.03} - m_{0.03}) - (Ce_{0.04} - m_{0.03} - m_{0.04}) - (Ce_{0.04} - m_{0.$															
$3c - (Ce_{0.47}La_{0.28}Nd_{0.07}Pr_{0.02}Th_{0.02}Ca_{0.01})_{\Sigma_{0.00}}(P_{0.08}Si_{0.02})_{\Omega_{0.00}}O_{4}$															
$4d - (Ce_{0.48}La_{0.38}Nd_{0.07}Pr_{0.04}Th_{0.03}Ca_{0.07})_{51.02}(P_{0.08}Si_{0.04})O_{4}$															
$\int 50 - (Ce_{0.47}La_{0.38}Nd_{0.07}Pr_{0.05}Th_{0.02})_{50.99}(P_{0.98}Si_{0.02})O_4$															
$6e - (Ca_{4.72}Na_{0.13}Ce_{0.08}La_{0.04}Nd_{0.03})_{\Sigma 5.00}(PO_4)_3F_{1.15}$															
$7g - (Ca_{0.89}Na_{0.2})_{\Sigma_{1.09}}(Ce_{0.49}La_{0.37}Nd_{0.05}Pr_{0.05}Eu_{0.03}Th_{0.01})_{\Sigma_{1.00}}(Fe_{0.91}Mg_{0.09})_{\Sigma_{1.00}}Al_{1.93}(SiO_4)(Si_2O_7)O(OH)$															
8h-0	$8h - (Ca_{0.93}Na_{0.2})_{\Sigma_{1,13}}(Ce_{0.43}La_{0.34}Nd_{0.06}Pr_{0.04}Th_{0.01})_{\Sigma_{0.88}}(Fe_{0.82}Mg_{0.06})_{\Sigma_{0.88}}Al_{2.03}(SiO_4)(Si_2O_7)O(OH)$														
9v – ((Ca _{0.89} N	$(a_{0.15})_{\Sigma 1.0}$	$_{4}(Ce_{0.48}]$	La _{0.36} Nd	$Pr_{0.07}Pr_{0.02}$	$(Th_{0.01})_{\Sigma}$	$_{0.94}(Fe_{0.9}$	$Mg_{0.09}$	$Mn_{0.06})_{\Sigma}$	$_{1.06}\text{Al}_{1.98}$	$(SiO_4)(S$	$Si_2O_7)O$	(OH)		
10u –	$-(Ce_{1.65})$	La _{1.25} Ca	_{0.79} Nd _{0.2}	$^{24}\text{Th}_{0.05}$	$_{\Sigma_{3.98}}(Al_{1.}$	$_{25}Fe_{0.70}$	$\Sigma_{1.95}(Ti_{2.5})$	$_{71}Fe_{0.29}$)	$\Sigma_{3.00}$ Si _{4.0}	₇ O _{22.03}					
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$(Th_{0.41})$	Ce _{0.29} Nd	$L_{0.12}La_{0.1}$	${}_{0}^{Ca}Ca_{0.04}P$	$r_{0.04} Y_{0.02}$	Sm _{0.01} F	$(e_{0.01})_{\Sigma 0.9}$	$_{4}(Ti_{1.6}N)$	$b_{0.4})_2 O_{5.}$	96					
12t - 12t	(Th _{0.40}	$Ce_{0.27}$ Nd	$^{0.10}$ La	$Ca_{0.18}P_{1}$	$(0.03)_{\Sigma 1.08}$	$(11_{1.56}N)$	$(b_{0.36})_{\Sigma_{1.92}}$	$O_{5.75}$							
151-	$(Ce_{0.49})$	La _{0.39} Nd	$_{0.08}$ Pr $_{0.04}$	$)_{\Sigma 1.00}(CC)$	$J_3)(F_{0.91})$	UH _{0.09})									

Примечание. Анализы 1a, 2b, 3c, 4d, 50 – монацит-(Ce); 6e – апатит-(CaF); 7g, 8h, 9v – алланит-(Ce); 10u – дингдаохенгит-(Ce); 11s, 12t – тороэшинит; 13i – бастнезит-(Ce). Минералы также содержат (мас. %): 7g – Eu₂O₃ 0.81; 9v – MnO 0.7; 11s – Nb₂O₅ 13.8, Sm₂O₂ 0.54, Y₂O₂ 0.48;12t – Nb₂O₅ 11.97. Прочерк – не обнаружено.

Note. Analyses 1a, 2b, 3c, 4d,5 o – monazite-(Ce); 6e – apatite-(CaF); 7g, 8h, 9v – allanite-(Ce); 10u – chevkinite-(Ce); 11s, 12t – thoroaeschynite; 13i – bastnäsite-(Ce). Minerals also contain (wt. %): $7g - Eu_2O_3 0.81$; 9v - MnO 0.7; $11s - Nb_2O_5 13.8$, $Sm_2O_3 0.54$, $Y_2O_3 0.48$; $12t - Nb_2O_5 11.97$. Dash – not found.

В составе фиксируются небольшие содержания РЗЭ, а в отдельных элементах анатомии – Sr (табл.).

Среди перечисленных минералов наблюдаются зерна калиевого полевого шпата $K_{0.85}Na_{0.15}AlSi_3O_8$, альбита $Na_{0.98}Ca_{0.02}Al_{1.02}Si_{2.98}O_8$, мусковита $K_{0.87}Na_{0.07}Mg_{0.02}Ti_{0.01}Fe_{0.17}Al_{1.87}(AlSi_3)O_{10}(OH)_2$, кальцита $(Ca_{0.94}Mn_{0.03}Fe_{0.02}Sr_{0.01})CO_3$, а также очень мелкие зерна циркона, которые изредка встречаются и в окружающем альбит-калишпатовом крупнозернистом агрегате (рис. 4) в виде синтаксических сростков альбита и калиевого полевого шпата с призна-

ками пластических деформаций без существенной рекристаллизации.

В целом, в текстуре минерального агрегата изученного образца не обнаружен яркий геометрический отбор от вмещающего миаскита внутрь пегматитового тела; минералогические отвесы или уровни отсутствуют. Нами не обнаружены признаки метасоматического минералообразования, модель которого предложена в работе А.Г. Жабина и Н.В. Свяжина (1962).

МИНЕРАЛОГИЯ 1(5) 2019

Обсуждение и заключение

Зональность (в том числе – концентрическая) и полосчатость обнаруживаются во многих минеральных телах различных объектов как проявление диссипативных текстур при кристаллизации сложных по составу жидкостей в закрытых системах. А.Г. Жабиным (1979) приведен пример образования нодулярных и орбикулярных текстур при эвтектоидной кристаллизации сравнительно простой по составу хромит-оливиновой магмы. Концентрическая минеральная зональность вокруг кристаллов некоторых минералов в гранитных пегматитах иллюстрируется иногда весьма наглядно (Повилайтис, 1990).

В нашем случае диссипация (преобразование однородного вещества в неоднородное) произошла вследствие кристаллизации сложного по химическому составу расплава-раствора, соответствующего щелочному пегматиту. Сначала выросли редкие крупные кристаллы монацита (сверхэвтектика?), создавшие вокруг себя волновые концентрационные поля. Заключительная стадия роста монацита сопровождалась эвтектическим ростом редкометалльно-редкоземельных минералов (12 минеральных видов). На завершающей стадии кристаллизации по объему преобладали полевые шпаты (синтаксические сростки альбита с калиевым полевым шпатом). Переходы в кристаллизации между разными зонами были плавными, поэтому идиоморфные головки у кристаллов предшествующих зон отсутствуют. В позднем преобладающем альбиткалишпатовом агрегате встречаются некоторые минералы парагенезиса, но в виде редких микроскопических индивидов.

При рассмотрении указанной последовательности кристаллизации минералов в закрытой системе можно предполагать изменение химического состава расплава-раствора. Сначала за счет кристаллизации монацита и присоединившихся к нему апатита с бастнезитом раствор обедняется Р (и F) вместе с РЗЭ. Кристаллизация минералов темной зоны вокруг монацита обедняет расплав-раствор РЗЭ, Nb и Zr. В остаточном расплаве-растворе преобладают компоненты альбит-калишпатовой эвтектики (синтаксических срастаний). Если начальный состав расплава-раствора (магмы) был фосфатносиликатным, то конечный – силикатным, что необычно для хода кристаллизации.

Таким образом, концентрически-зональный агрегат редкометалльно-редкоземельных минералов в полевошпатовом пегматите Вишнёвых гор демонстрирует редкий (?) случай диссипации (появления концентрационных волн в однородной жидкости), возникшей при кристаллизации сложной по составу жидкости в закрытой системе (камере, соответствующей пегматитовому телу). Последовательность кристаллизации в системе, в которой участвует до 12 синхронных минералов, сложно отобразить на петрологической диаграмме. Однако такие системы существуют, и для их описания требуется разработка специальных подходов.

Автор признателен И.А. Блинову за выполнение аналитических работ. Исследования проведены в рамках госбюджетной темы № АААА-А17-1/7020250032-1.

Литература

Жабин А.Г. (1979) Онтогения минералов. Агрегаты. М., Наука, 275 с.

Жабин А.Г., Свяжин Н.Г. (1962) О концентрически-зональных агрегатах редкоземельных минералов из щелочного комплекса Вишнёвых гор. *Труды ИМГРЭ*, 9, 55–66.

Минералы (1972). М., Наука, **3**(1), 882 с.

Повилайтис М.М. (1990) Ритмично-расслоенные гранитные интрузии и оруденение. М., Наука, 240 с.

Попов В.А. (2011) Практическая генетическая минералогия. Екатеринбург, УрО РАН, 167 с.

References

Zhabin A.G. (1979) [Ontogeny of minerals. Aggregates]. Moskva, Nauka, 275 p. (in Russian)

Zhabin A.G., Svyazhin N.V. (1962) [On concentrically zoned aggregates of rare-earth minerals from the alkaline complex of the Vishnevye mountains]. *Trudy IMGRE [Proceedings of the Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements]*, **9**, 55–66. (in Russian)

Minerals (1972). Moskva, Nauka, **3**(1), 882 p. (in Russian)

Povilaytis M.M. (1990) [Rhythmically-stratified granite intrusions and mineralization]. Moskva, Nauka, 240 p. (in Russian)

Popov V.A. (2011) [Practical genetic mineralogy]. Yekaterinburg, UrO RAS, 167 p. (in Russian)

Статья поступила в редакцию 5 февраля 2019 г.