УДК 549.27

DOI: 10.35597/2313-545X-2020-6-1-3

МИНЕРАЛЬНЫЕ ВКЛЮЧЕНИЯ В ЗЕРНАХ ПЛАТИНЫ ИЗ КАЗАНСКОЙ РОССЫПИ (ЮЖНЫЙ УРАЛ)

Е.В. Зайкова, И.А. Блинов, В.А. Котляров

Южно-Уральский научный центр минералогии и геоэкологии УрО РАН, Институт минералогии, г. Миасс, Челябинская обл., 456317 Россия; zaykova@mineralogy.ru

MINERAL INCLUSIONS IN PLATINUM GRAINS FROM THE KAZAN PLACER (SOUTH URALS)

E.V. Zaykova, I.A. Blinov, V.A. Kotlyarov

South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk district, 456317, Russia; zaykova@mineralogy.ru

Зерна платины из Казанской россыпи на Южном Урале содержат включения самородных металлов (золота, сплавов группы осмия), а также халькогенидов элементов платиновой группы, представленных сульфидами (лауритом, эрликманитом, бауитом), сульфоарсенидами (ирарситом, холлингвортитом), стибиопалладинитом, теллуридом (меренскиитом) и селенидами.

Илл. 5. Табл. 7. Библ. 13.

Ключевые слова: Казанская россыпь, платина, самородное золото, сплавы элементов группы осмия, теллуриды, селениды и сульфиды ЭПГ.

Platinum grains from the Kazan placer in the South Urals contain inclusions of native metals (gold, osmium group alloys), as well as PGE chalcogenides: sulfides (laurite, erlichmanite, bauite), sulfoarsenides (irarsite and hollingworthite), stibiopalladinite, telluride (merenskiite) and selenides. Figures 5. Tables 7. References 13.

Key words: Kazan player, platinum, native gold, alloys of the osmium group elements, tellurides, selenides, sulfides PGE.

Введение

В настоящее время элементы платиновой группы (ЭПГ) отнесены к категории стратегического сырья (Распоряжение Правительства РФ от 22 декабря 2018 г. № 2914-р «О стратегии развития минерально-сырьевой базы РФ до 2035 г.»). К группе платиновых металлов относится шесть элементов – Ru, Rh, Pd, Os, Ir и Pt. Южный Урал является одним из регионов, где происходит попутная добыча платиноидов из россыпей золота.

Для россыпей Южного Урала характерно неравномерное распределение минералов платиновой группы (МПГ) с переменным составом (Ir-Os-Ru и Pt-Fe) (Зайков и др., 2016а–в). МПГ часто содержат включения других минералов, в том числе халькогениды ЭПГ (Зайков и др., 2018). Информация о минеральных формах нахождения ЭПГ вносит существенный вклад в определение источников и условий образования россыпей (Zaykov et al., 2017).

Одним из объектов, где происходит промышленная добыча золота и ЭПГ, являются россыпи Гогинской россыпной зоны, которая находится в 100–150 км к ЮЮВ от г. Магнитогорска (рис. 1). В состав зоны входит 20 россыпей длиной 1.0–3.0 км и шириной 80–200 м. Тип россыпей карстовый и аллювиально-пролювиальный, возраст мезозойский и миоценовый. Гогинская зона относится к россыпям Южного Урала, образование которых связано с эрозионно-структурными депрессиями, заполнявшихся континентальными осадками мезозоя (Сигов и др., 1971; Баранников, 2006).

Рис. 1. Схема расположения основных россыпных зон на Южном Урале с данными о составе золота по (Зайков и др., 2016в).

1 – россыпные зоны; 2, 3 – россыпи золота с платиноидами (2) и без платиноидов (3); 4 – места отбора проб; 5 – фрагменты гипербазитовых поясов.

Россыпные зоны: І – Авзянско-Прибельская, II – Кыштымская, III – Миасская, IV – Миндякская, V – Восточно-Ирендыкская, VI – Непряхинская, VII – Кочкарская, VIII – Гумбейская, IX – Гогинская, X – Амамбайская, XI – Суундукская.

Fig. 1. Position of main placer zones in the South Urals with available data on the composition of gold after (Zaykov et al., 2016).

1 - placer zones; 2, 3 - gold placers with (2) and without (3) PGMs; 4 - sampling places; 5 - fragments of ultramatic belts.

Placer zones: I – Avzyan–Pribelskaya, II – Kyshtym, III – Miass, IV – Mindyak, V – East Irendyk, VI – Nepryakhino, VII – Kochkar, VIII – Gumbeyka, IX – Gogino, X – Amambayka, XI – Suunduk.

Казанская россыпь приурочена к Брединской эрозионной депрессии (рис. 2). Россыпь имеет сложное строение и входит в состав одноименного россыпного поля длиной 5 км (Зайков и др., 2016в). На этом поле распространены мезозойские и неогеновые золотоносные отложения. В наиболее крупной Владимирской россыпи площадью 0.5 × 0.8 км золотоносный пласт мелового возраста имеет мощность 1.1 м. Ниже золотоносных пластов залегают карстовые отложения с золотосодержащими «косыми пластами» мощностью до 10 м.

Методы исследований

Материал для исследований в виде платинового концентрата и черного шлиха передан сотрудниками ООО «Миасский прииск» А.Ю. Ивановым и Б.Я. Гисматуллиным. Пробы были отобраны из карьера № 3 Казанской россыпи в июле 2017 г. Обработка проб проводилась К.А. Новоселовым по схеме: 1) классификация по крупности: +2, -2...+1, -1...+0.5, -0.5...+0.25, -0.25 мм; 2) магнитная/ электромагнитная сепарация фракций -1...+0.5, -0.5...+0.25, -0.25 мм с помощью магнита Сочнева; 3) разделение немагнитной фракции в бромоформе (2.9 г/см³) с перечисткой класса -0.25 мм.

В пробах встречались зерна золота и ЭПГ, которые были изучены под бинокулярным микроскопом и рассортированы по морфологии В.В. Зайковым. Из нескольких десятков зерен разных морфологических типов были смонтированы полированные брикеты на основе эпоксидной смолы. Состав минералов исследован на растровых электронных микроскопах VEGA3 TESCAN с энергодисперсионной приставкой Oxford Instruments X-act (аналитик А.И. Блинов) и РЭММА 202М ЭДС Link (аналитик В.А. Котляров). При анализе использовался ток 15 нА, ускоряющее напряжение 20 кВ, время набора спектра 120 с. В качестве стандартов использованы чистые металлы ЭПГ и селенид свинца (MINM-25-53 стандарт ASTIMEX, шашка № 01–044).

Результаты исследований

Зерна золота и платины из Казанской россыпи установлены во фракциях –1...+0.5, –0.5...+0.25 и –0.25. Количество платины достигает 73 % от всех исследованных зерен МПГ (рис. 3). Помимо платины встречаются сплавы промежуточного состава Os-Ru-Ir, а также сульфиды и сульфоарсениды ЭПГ.

Зерна платины имеют уплощенную форму. По химическому составу вся платина относится к ферроплатине или железистой платине (среднее содержание Pt 90.28 мас. %; табл. 1). Резко преобладает платина с содержаниями 89–91 мас. % Pt

Рис 2. Положение Казанской россыпи в Гогинской россыпной зоне (составлено Е.В. Белогуб по материалам геологической карты листа N-41-XXVG, с упрощениями).

четвертичные аллювиальные отложения; 2 – неогеновые аллювиальные и пролювиальные отложения; 3 – углеродистые сланцы; 4 – известняки; 5 – слюдистые сланцы; 6 – углисто-глинистые сланцы; 7 – песчаники; 8 – гранитоиды; 9 – габбро; 10 – серпентиниты; 11 – границы Брединской структурно-эрозионной депрессии; 12 – россыпи; 13 – Казанская россыпь; 14 – реки; 15 – населенные пункты.

Fig. 2. Position of the Kazan placer in the Gogino placer zone (simplified by E.V. Belogub after State Geological Map, sheet N-41-XXVG).

1 -Quaternary alluvium; 2 -Neogene alluvium and proluvium; 3 -carbonaceous schists; 4 -limestones; 5 -micaceous schists; 6 -carbonaceous-clayey schists; 7 -sandstones; 8 -granitoids; 9 -gabbro; 10 -serpentinites; 11 -boundary of the Bredy structural erosion depression; 12 - placers; 13 -Kazan placer; 14 -rivers; 15 -settlements.

Рис. 3. Содержание отдельных зерен платиноидов различного состава (141 зерно).

1 – платина, изоферроплатина, тетраферроплатина (73 %); 2 – иридий (4 %); 3 – рутений (3 %); 4 – осмий (15 %); 5 – арсениды, сульфиды и сульфоарсениды (4 %); 6 – сростки (1 %).

Fig. 3. Amount of PGM grains of different composition (141 grains in total).

1 – platinum, isoferroplatinum, tetraferroplatinum (73 %); 2 – iridium (3 %); 3 – osmium (15 %); 4 – arsenides, sulfides, sulfoarsenides (4 %); 5 – intergrowths (1 %).

(79 % от количества зерен). В подчиненном количестве встречается платина с содержаниями (мас. %) 92–93 Pt (11 %), 87–88 Pt (6 %), 95 Pt (2 %) и 82 и 76 (1 %). Во всех анализах отмечается примесь Fe: 2.59–9.81 мас. % (среднее содержание Fe

МИНЕРАЛОГИЯ 6(1) 2020

7.36 мас. %). В большинстве анализов определены примеси Cu (0.19–4.02 %), Rh (0.3–4.18 мас. %) и Pd (0.2–2.79 мас. %). Реже отмечаются Os (до 14.64 мас. %), Ir (обычно 1–3 мас. %, в одном случае до 5.62 мас. %), Ru (0.2–2.25 мас. %) и Sb (0.57– 3.14 мас. %). Примесь Ni установлена только в трех пробах в концентрациях на пределе чувствительности прибора 0.11–0.12 мас. %.

Зерна платины часто содержат включения других минералов, представленных самородными металлами и халькогенидами ЭПГ.

Самородное золото образует субизометричные включения размером до 20–40 мкм (рис. 4а, б). По химическому составу золото относится к средне- и высокопробному (Петровская, 1973). Для золота характерны примеси Pd (до 3.98 мас. %) и Cu (до 0.58 мас. %) (табл. 2). Содержания Pt обычно не превышают 6 мас. %, в одном анализе достигая 21.16 мас. %. Иногда отмечаются примеси Ir, Fe и Os. Золото из включений в платине резко отличается по составу от свободного комковидного, уплощенного, чешуйчатого золота из россыпи, содержание Ag в котором составляет 5–25 мас. %. Это золото часто окружено прерывистой каймой

3	6

Chemical composition of platinum grains from the Kazan placer (wt. %)

																								_									
	Кристаллохимическая формула	$(Pt_{0,73}Fe_{0,74}Cu_{0,07}Pd_{0,01})_{1,00}$	$(Pt_{0.73} Fe_{0.74} Cu_{0.07} Pd_{0.01})_{1.00}$	$(Pt_{0.73}Fe_{0.24}Cu_{0.02}Os_{0.01})_{1.00}$	$(Pt_{0.74}Fe_{0.73}Cu_{.0.07}Pd_{0.01})_{1.00}$	$(Pt_{0.73}Fe_{0.73}Cu_{0.03}Os_{0.01})_{1.00}$	$(Pt_{0,73}Fe_{0,73}Cu_{0,07}Rh_{0,01}Pd_{0,01})_{1,00}$	$(Pt_{0,81}Fe_{0,14}Pd_{0,02}Os_{0,01}Rh_{0,01}Ir_{0,01})$	$(Pt_{0.74}Fe_{0.2},Pd_{0.01})_{1.00}$	$(Pt_{0,73}Fe_{0,19}Cu_{0.06}Pd_{0,07})_{1,00}$	$(Pt_{0.74} Fe_{0.2}, Cu_{0.01})_{1.00}$	$(Pt_{0.88}Fe_{0.08}Rh_{0.03}Pd_{0.01})_{1.00}$	$(Pt_{0,73}Fe_{0,73}Os_{0,07}Pd_{0,01}Cu_{0,01})_{1,00}$	$(Pt_{0.74}Fe_{0.24}Cu_{0.07})_{1.00}$	$(Pt_{0.74} Fe_{0.21} Cu_{0.04} Pd_{0.01})_{1.00}$	$(Pt_{0.83}Fe_{0.14}Cu_{0.02}Pd_{0.01})_{1.00}$	$(Pt_{0.74} Fe_{0.2}, Cu_{0.01})_{1.00}$	$(Pt_{0.75}Fe_{0.24}Cu_{0.01})_{1.00}$	$(Pt_{0.74}Fe_{0.24}Cu_{0.07})_{1.00}$	$(Pt_{0.74} Fe_{0.23} Cu_{0.03})_{1.00}$	$(Pt_{0,73}Fe_{0,77})_{1,00}$	$(\underline{Pt}_{0.73} - \underline{Fe}_{0.23} - \underline{Cu}_{0.01} - \underline{Ir}_{0.01} - \underline{Pd}_{0.01} - \underline{Ru}_{0.01})_{1.00}$	$(\mathrm{Pt}_{0.68}\mathrm{Fe}_{0.10}\mathrm{Os}_{0.14}\mathrm{Ir}_{0.03}\mathrm{Ru}_{0.02}\mathrm{Rh}_{0.02})$	$(\mathbf{Pt}_{0,73}^{0,01},\mathbf{Fe}_{0,75}^{0,01}\mathbf{Ir}_{0,01}\mathbf{Os}_{0,01})_{1,00}$	$(Pt_{0.73}Fe_{0.23}Cu_{0.02}Ir_{0.01}Rh_{0.01})_{1.00}$	$(Pt_{0,7}Fe_{0,21}Cu_{0.06}Pd_{0.01})_{1.00}$	$(Pt_{0.74} Fe_{0.24} Cu_{0.02})_{1.00}$	$(Pt_{0.74}Fe_{0.25}Cu_{0.01})_{1.00}$	$(Pt_{0.75}Fe_{0.22}Cu_{0.02}Pd_{0.01})_{1.00}$	$(Pt_{0,77} Fe_{0,17} Cu_{0,06} Pd_{0,03} Rh_{0,01} Os_{0,01})_{1,00}$	$(Pt_{0.75}^{0.17} + e_{0.25}^{0.01})_{1.00}$	$(\mathbf{Pt}_{0.8}, \mathbf{Fe}_{0.18})_{1.00}$	$(Pt_{0.78}Fe_{0.18}Cu_{0.03}Rh_{0.01})_{1.00}$
	Сумма	90.09	100.00	99.68	100.15	100.28	99.13	99.70	100.30	100.97	100.12	99.46	100.82	100.28	99.94	99.05	99.15	99.03	99.32	99.73	100.39	99.80	99.29	100.00	99.25	99.95	100.98	100.00	99.04	99.92	100.00	100.00	99.50
	Ni	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I		I		I		I	I	I	I	I	I	I	I	I	I	I	I
ון דיייייי	Fe	8.29	8.39	8.36	8.06	7.88	7.90	4.53	8.70	6.73	8.72	2.59	8.10	8.36	7.43	4.50	8.77	8.35	8.24	8.03	9.44	8.14	3.17	8.68	7.77	7.36	8.53	8.66	7.80	6.11	8.87	6.10	6.23
Imana	Cu	0.91	0.93	0.93	1.01	1.25	0.64	I	I	2.28	0.22	I	0.40	0.85	1.69	0.83	0.19	0.23	0.59	1.13	I	0.84	I	I	0.65	2.47	0.77	0.40	0.76	2.28	I	I	0.98
	Sb	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I		I	I		I	I	I	I	I	I	I	I	I	I
	Pd	0.44	0.45	0.14	0.60	I	0.80	1.02	0.38	1.08	0.32	0.56	0.77	0.31	0.33	0.34			0.31	0.22	0.27	0.44	0.81			0.37	0.27		0.53	1.92	I	I	I
	Pt	89.45	89.79	89.70	90.48	89.88	88.81	91.23	91.04	90.53	90.86	94.90	89.18	90.76	90.50	93.38	89.70	90.45	90.17	90.35	90.68	89.22	75.58	88.97	88.58	89.76	91.42	90.94	89.94	87.82	91.13	93.90	91.84
TIME	Ru	I	0.09	Ι		0.26	I	0.12	I	I	I	I	I	I	I	I	I	I	I	I	I	0.27	1.16	I	I		I		I	I	I	I	I
	Rh	I	I	Ι	I	I	0.98	0.66	I	0.34	I	1.40	I	I	I	I	I	I	I	I	I	I	1.11	I	0.59	I	I		I	0.94	I	I	0.45
renduit	Ir	I	I	I	I	I	I	0.71	I	I	I	I	I	I	I	I		I		I		0.89	2.82	1.56	1.22	I	I		I	I	I	I	I
	Os	I	0.34	0.56	I	1.03	I	1.44	0.19				2.37			I	0.49	I		I		I	14.64	0.79	0.44	I	I		I	0.85	I	I	I
	Кол-во анализ.	-	1	2	1	7	1	с	7	1	7	1	1	1	7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	7	2	2	1
	№ анализа	16140a	16140b	$16140 \mathrm{nv}^{*}$	16141a	$16141 hm^*$	16141n	16141vc'e'*	16141wd'*	16142c	16142fh*	16142j	16143b	16143k	161431p*	161430	16143s	16143u	16143w	16143c'	16144a	16144d	16150b	16150c	16150j	16150p	16150s	16150v	16150x	16130fg*	16130mp^*	16130qr*	16130w
	Проба (зерно)	Ka-p2-ry6(1)	Ka-p2-ry6(2)	Ka-p2-ry6(3)	Ka-p2-ry6(4)	Ka-p2-ry6(5)	Ka-p2-ry6(6)	Ka-p2-ry6(7)	Ka-p2-ry6(7)	Ka-p2-ry6(8)	Ka-p2-ry6(9)	Ka-p2-ry6(11)	Ka-p2-ry6(12)	Ka-p2-ry6(13)	Ka-p2-ry6(14)	Ka-p2-ry6(14)	Ka-p2-ry6(15)	Ka-p2-ry6(16)	Ka-p2-ry6(17)	Ka-p2-ry6(18)	Ka-p2-ry6(19)	Ka-p2-ry6(20)	Ка-р2-губ(22)	Ka-p2-ry6(23)	Ka-p2-ry6(24)	Ka-p2-ry6(25)	Ka-p2-ry6(26)	Ka-p2-ry6(27)	Ka-p2-ry6(28)	Ка-р2-ж(3)	Ка-р2-ж(4)	Ка-р2-ж(5)	Ка-р2-ж(6)
	№ П/П		0	ω	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

МИНЕРАЛОГИЯ **6**(1) 2020

$ (\mathrm{Pt}_{0,7_{4}}\mathrm{Fe}_{0,23}\mathrm{Cu}_{0,02}\mathrm{Rh}_{0,01})_{1,00} $	$(Pt_{0.82}Fe_{0.09}Cu_{0.07}Rh_{0.02})_{1.00}$	$(Pt_{0.73}Fe_{0.20}Cu_{0.06}Rh_{0.01})_{1.00}$	$(Pt_{0.84}Fe_{0.12}Rh_{0.03}Pd_{0.01})_{1.00}$	$ (Pt_{0,71}Fe_{0,19}Cu_{0,07}Rh_{0,01}Sb_{0,02}) _{0,0}$	$(Pt_{0.70}Fe_{0.21}Rh_{0.04}Cu_{0.03}Ru_{0.02})_{1.00}$	$(Pt_{0.87}Fe_{0.11}Rh_{0.02}Pd_{0.01})_{1.00}$	$(Pt_{0,87}Fe_{0,11}Rh_{0,01}Pd_{0,01})_{1,00}$	$(Pt_{0.74}Fe_{0.24}Cu_{0.07}Rh_{0.02})_{1.00}$	$(Pt_{0.73}Fe_{0.24}Pd_{0.02}Cu_{0.01})_{0.00}$	$(Pt_{0.73}Fe_{0.20}Cu_{0.05}Rh_{0.01}Os_{0.01})_{1.00}$	$(\mathbf{Pt}_{0.74}^{-1}\mathbf{Fe}_{0.20}^{-1}\mathbf{Cu}_{0.06}^{-0.06})_{1.00}$	$ (\mathbf{Pt}_{0.72}\mathbf{Fe}_{0.27}\mathbf{Pd}_{0.01})_{1.00} $	$(Pt_{0.74}^{0.74}Fe_{0.25}^{0.01}Cu_{0.01}^{0.01})_{1.00}$	$(\mathbf{Pt}_{0.73}^{-1}\mathbf{Fe}_{0.18}^{-1}\mathbf{Cu}_{0.06}^{-0.06}\mathbf{Sb}_{0.03})_{1.00}$	$ (\mathbf{Pt}_{0.74}\mathbf{Fe}_{0.26})_{1.00} $	$(Pt_{0.74}Fe_{0.25}Cu_{0.01})_{1.00}$	$(\mathbf{Pt}_{0.74}\mathbf{Fe}_{0.24}\mathbf{Cu}_{0.02})_{1.00}$	$5 \left[(Pt_{0.73}Fe_{0.21}Cu_{0.06}) \right]_{1.00}$	$ (Pt_{0.73}Fe_{0.24}Cu_{0.03}) _{0.00}$	$ (\mathbf{Pt}_{0.74}^{(1)} \mathbf{Fe}_{0.76}^{(1)}) _{0.06}$	$ (Pt_{0.74} Fe_{0.23} Cu_{0.02} Sb_{0.01})_{1.00} $	$(Pt_{0.74}Fe_{0.23}Cu_{0.02}Pd_{0.01})_{1.00}$	$\left \left(Pt_{0.70}Fe_{0.25}Cu_{0.02}Rh_{0.01}Ir_{0.01}Pd_{0.01}\right)_{1.00}\right $	$(Pt_{0.74}Fe_{0.21}Cu_{0.03}Pd_{0.01}Rh_{0.01})_{1.00}$	$(Pt_{0.74}Fe_{0.24}Cu_{0.02})_{1.00}$	$ (Pt_{0.73}Fe_{0.23}Cu_{0.04})_{1.00} $	$ (Pt_{0.73}Fe_{0.25}Cu_{0.01}Pd_{0.01}) _{1.00}$	$(Pt_{0.74}Fe_{0.23}Cu_{0.02}Sb_{0.01})_{1.00}$	$(\mathrm{Pt}_{0.74}\mathrm{Fe}_{0.26})_{1.00}$	$(Pt_{0.74}Fe_{0.23}Cu_{0.03})_{1.00}$	$(Pt_{0.75}Fe_{0.25})_{1.00}$	$(Pt_{0.74}Fe_{0.24}Pd_{0.01}Cu_{0.01})_{1.00}$	$(\mathrm{Pt}_{0.74}\mathrm{Fe}_{0.23}\mathrm{Cu}_{0.02}\mathrm{Rh}_{0.01})_{1.00}$	$(\mathrm{Pt}_{0.73}\mathrm{Fe}_{0.25}\mathrm{Pd}_{0.01}\mathrm{Cu}_{0.01})_{1.00}$	$ (\mathbf{Pt}_{0.72} \mathbf{Fe}_{0.27} \mathbf{Pd}_{0.01})_{1.00} $	$(\mathrm{Pt}_{0.74}\mathrm{Fe}_{0.25}\mathrm{Cu}_{0.01})_{1.00}$	$(Pt_{0.74}Fe_{0.23}Cu_{0.03})_{1.00}$
99.01	99.05	99.08	96.90	100.14	99.64	99.22	99.26	99.78	99.94	100.38	96.66	100.79	99.74	99.82	100.87	100.96	100.46	90.0.66	100.00	100.00	100.66	99.79	100.40	99.65	100.67	100.00	100.09	100.71	99.72	100.59	100.79	99.30	100.41	99.34	100.72	99.16	99.10
		I				Ι	I		l	I		Ι		Ι	Ι	Ι	Ι	Ι	Ι	I	I	Ι	Ι	Ι	Ι	Ι	I	I	I	I	I	I	I			I	1
7.80	3.02	6.90	3.95	6.69	7.46	3.44	8.40	3.21	8.47	6.92	6.93	9.81	8.63	6.52	9.0.06	8.99	8.44	7.43	8.29	9.03	8.28	8.05	8.81	7.50	8.44	8.32	8.80	8.01	9.11	8.05	8.98	8.58	8.22	8.64	9.60	8.69	7.88
0.81	2.48	2.44	I	2.76	1.08	I	Ι	2.46	0.57	1.99	2.43	Ι	0.39	2.51	I	0.30	0.98	2.32	1.28		0.80	0.92	0.72	1.24	06.0	1.53	0.48	0.97	I	1.15	I	0.32	0.79	0.33		0.24	1.19
	I	Ι	I	1.79	I	Ι	I	I	Ι	Ι	Ι	Ι	Ι	1.97	Ι	Ι	Ι	Ι	Ι	Ι	0.57	Ι	Ι	Ι	Ι	Ι	0.62	1.04	Ι	Ι	Ι	Ι	Ι	I		I	Ι
	0.35	Ι	0.56	0.09	0.21	0.45	0.60	0.38	1.10	Ι	Ι	0.53	I	Ι	0.36	Ι	Ι	Ι	Ι	Ι	Ι	0.42	0.50	0.61	Ι	Ι	Ι	Ι	0.27	Ι	Ι	0.56	0.36	0.56	0.61	1	I
89.89	92.14	89.38	93.90	88.48	87.23	94.84	89.71	92.66	89.50	89.43	90.60	90.45	90.72	88.81	91.45	91.67	91.04	89.31	90.43	90.97	91.01	90.41	88.37	89.82	91.34	90.15	90.18	90.69	90.34	91.39	91.81	89.83	90.68	89.81	90.51	90.23	90.03
I	I	I	I	I	1.12	I	I	I	ı	I	I	I	I	I	Ι	I	I	Ι	I	I	I	I	I	I	I	I	Ι	I	I	I	I	I	I				1
0.51	1.05	0.35	1.50	0.34	2.54	0.49	0.55	1.07	0.30	0.97	I	I	I	I	I	I	I	I	I		I	I	0.94	0.48	I	I	I	I	I	I	I	I	0.36			I	
I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	Ι	Ι	Ι	I	I	I	1.06	I	I	I	I	I	I	I	I	I	I			I	1
I		I					I		I	1.07	I	I		I	I	I	I	I	I			I	I	I	I		I	I	I		I	I	I				
1	1	1	1	4	7	1	1	1	7	1	1	1	7	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	2	1	1	1	1	1	1	1	
16130c'	16131d	16131j	16131p	16131twya*	16132kp*	16132t	16132v	16132y	16166bc*	16166e	161661	161660	16166rs*	16166z	16167b	16167c	16167h	16167j	16167o	16167r	16167w	16168de*	16168f	16168k	161681	16168s	16168t	16168b'	16175bc*	16175e	16175f	16175i	16175j	16175q	16175r	16175v	16175w
Ка-р2-ж(7)	Ка-р2-ж(8)	Ка-р2-ж(10)	Ка-р2-ж(13)	Ка-р2-ж(14)	Ка-р2-ж(16)	Ка-р2-ж(18)	Ка-р2-ж(19)	Ка-р2-ж(20)	Ka-p2-m(1)	Ka-p2-m(3)	Ka-p2-m(4)	Ka-p2-m(6)	Ka-p2-m(7)	Ka-p2-M(8)	Ka-p2-m(9)	Ka-p2-m(10)	Ka-p2-m(11)	Ka-p2-m(12)	Ka-p2-m(13)	Ka-p2-m(14)	Ka-p2-m(15)	Ka-p2-m(17)	Ka-p2-m(18)	Ka-p2-m(19)	Ka-p2-m(20)	Ka-p2-m(21)	Ka-p2-m(22)	Ka-p2-m(23)	Ka-p2-m(24)	Ka-p2-m(25)	Ka-p2-m(26)	Ka-p2-m(27)	Ka-p2-m(28)	Ka-p2-m(29)	Ka-p2-m(30)	Ka-p2-m(31)	Ka-p2-m(32)
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68	69	70

МИНЕРАЛОГИЯ **6**(1) 2020

																											00							'eT	:
Кристаллохимическая формул	$(Pt_{0,76}Fe_{0,11}Cu_{0,11}Rh_{0,01}Pd_{0,01})_{1,00}$	$(Pt_{0,73}Fe_{0,21}Cu_{0,05}Pd_{0,01})_{1,00}$	$(Pt_{0.73}Fe_{0.25}Pd_{0.01}Cu_{0.01})_{1.00}$	$(Pt_{0.75}Fe_{0.15}Cu_{0.08}Pd_{0.07})_{1.00}$	$(Pt_{0.77} Fe_{0.71} Sb_{0.07})_{1.00}$	$(\mathbf{Pt}_{0.77}^{0.01}\mathbf{Fe}_{0.22}^{0.01}\mathbf{Rh}_{0.01})_{1.00}$	$(Pt_{0.77} Fe_{0.23})_{1.00}$	$(Pt_{0.76}Fe_{0.73}Rh_{0.01})_{1.00}$	$(Pt_{0.78} + Fe_{0.27})_{1.00}$	$(Pt_{0.78}Fe_{0.19}Cu_{0.05}Sb_{0.01})_{1.00}$	$(Pt_{0.76}Fe_{0.27}Rh_{0.07})_{1.00}$	$(Pt_{0.76}Fe_{0.77}Rh_{0.07})_{1.00}$	$(Pt_{0.81}Fe_{0.15}Rh_{0.03}Cu_{0.01})_{1.00}$	$(Pt_{0.78}Fe_{0.21}Rh_{0.01})_{1.00}$	$(Pt_{0.83}Fe_{0.1},Rh_{0.05})_{1.00}$	$(Pt_{0,s3}Fe_{0,10}Rh_{0,06}Cu_{0,01})_{1,00}$	$(Pt_{0.75}Fe_{0.25})_{1.00}$	$(Pt_{0.78}Fe_{0.22})_{1.00}$	$(Pt_{0.78}Fe_{0.20}Cu_{0.02})_{1.00}$	$(Pt_{0.78}Fe_{0.22})_{1.00}$	$(Pt_{0.78}Fe_{0.21}Rh_{0.01})_{1.00}$	$(Pt_{0.78}Fe_{0.18}Cu_{0.04})_{1.00}$	$(Pt_{0.79}Fe_{0.19}Cu_{0.01}Rh_{0.01})_{1.00}$	$(Pt_{0.76}Fe_{0.21}Rh_{0.03})_{1.00}$	$(Pt_{0.76}Fe_{0.22}Rh_{0.02})_{1.00}$	$(Pt_{0.69}Fe_{0.20}Cu_{0.07}Sb_{0.04})_{1.00}$	$(Pt_{0.63}Fe_{0.11}Pd_{0.11}Rh_{0.06}Ir_{0.04}Os_{0.03}Cu_{0.02})_{1}$	$(\mathrm{Pt}_{0.74}\mathrm{Fe}_{0.23}\mathrm{Cu}_{0.03})_{1.00}$	$(Pt_{0.68}Fe_{0.22}Pd_{0.08}Cu_{0.01}Os_{0.01})_{1.00}$	$(Pt_{0,69}Fe_{0.23}Pd_{0.06}Cu_{0.02})_{1.00}$	$(Pt_{0.63}Fe_{0.17}Pd_{0.14}Cu_{0.05}Rh_{0.01})_{1.00}$	$(\mathbf{Pt}_{0.75}\mathbf{Fe}_{0.25})_{1.00}$	$(Pt_{0.79}Fe_{0.20}Cu_{0.01})_{1.00}$	ия, количество букв соответству	······································
Сумма	99.03	100.85	100.00	100.00	99.80	99.78	99.66	99.65	100.01	99.52	99.80	99.13	99.57	99.55	99.87	99.83	99.65	99.71	99.17	99.86	99.86	99.70	99.52	99.59	99.40	100.00	100.00	100.00	100.00	100.00	100.00	99.88	99.90	е значен	
Ŋ	-	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	0.04	I	Ι	Ι	I	I	I	I	I	I	I	I	0.11	0.02	редни	5
Ее	3.63	7.63	8.89	5.19	7.16	7.46	7.95	7.71	7.35	6.40	7.63	7.40	4.98	7.28	4.02	3.17	8.53	7.34	6.75	7.45	7.08	6.12	6.42	7.15	7.65	7.38	4.07	8.18	8.26	8.52	6.81	8.45	6.55	1; * - c	_
Cu	4.02	1.86	0.22	3.18		Ι	I		Ι	0.68	I		0.31			0.39	I	0.21	0.72	I	I	1.39	0.26			2.91	0.66	1.02	0.42	0.97	2.42	I	0.50	авную	- 17
Sb	Ι	I	I	I	1.32	I	I	I	I	0.83	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	3.14	I	I	I	I	I	Ι	I	JOB, p	-
Pd	0.64	0.47	0.76	1.26	I	I	I	I	I	I	I				I	I	I	I	I	I	I	I	I	I	I	I	0.75		0.58	0.41	1.08	I	I	метал	
Pt	89.86	90.89	90.13	90.37	91.32	91.62	91.48	91.25	92.27	91.52	91.03	90.29	92.80	91.70	93.02	92.90	91.12	92.17	91.41	92.37	91.89	92.19	92.5	90.22	90.69	86.57	81.54	90.80	89.20	90.10	89.07	91.33	92.67	a cymmy	* د
Ru																	I	I	I	I	I	I	I						0.22	I	I	I		тана на	-
Rh	0.89	I		I	I	0.71	0.23	0.68	0.39	0.08	1.14	1.45	1.48	0.56	2.84	3.37	I	I	0.29	I	0.89	I	0.34	2.22	1.07	I	4.18		0.24	Ι	0.62		I	рассчи	-
ц	Ι	I		I	I	I	I	I	I	I	I				I	I	I	I	I	I	I	I	I	I	I	I	5.62			Ι	I		I	ерала	-
Os	I					I	I		I		I					I						I	I				3.18		1.08		I	I	0.16	ла мин	-
Кол-во анализ.	1	1	1	1	7	1	б	1	1	7	1	1	2	1	1	1	1	1	1	1	2	5	5	1	1	1	1	-	7	1	1	ς	ς	3: dopmy	
№ анализа	16176a	16176h	16176j	161761	23229ma*	23230e	23231def*	23232a	23233a	23233cd*	23233g	23234a	23217ab*	23218a	23218e	23219a	23219g	23220a	23221a	23222a	23223al*	23224ab*	23224cf*	23225b	23225f	16139f	16139j	16163i	16137ef*	16137f	16137z	22216abc*	22216hgi*	ь и в табл. 2,	DBAHHBIX TOVE
Проба (зерно)	Ка-р2-м(33)	Ka-p2-m(34)	Ka-p2-m(35)	Ka-p2-m(36)	Ka-2pC-Pt(2)	Ka-2pC-Pt(6)	Ka-2pC-Pt(6a)	Ka-2pC-Pt(7)	Ka-2pC-Pt(8)	Ka-2pC-Pt(9)	Ka-2pC-Pt(12)	Ka-2pC-Pt(14)	Ka-2pC-Pt1(2)	Ka-2pC-Pt1(4)	Ka-2pC-Pt1(5)	Ka-2pC-Pt1(14)	Ka-2pC-Pt1(15)	Ka-2pC-Pt1(16)	Ka-2pC-Pt1(8)	Ka-2pC-Pt1(9)	Ka-2pC-Pt1(10)	Ka-2pC-Pt1(11)	Ka-2pC-Pt1(12)	Ka-2pC-Pt1(18)	Ka-2pC-Pt1(19)	Ka-p2-xp(1)	Ka-p2-xp(2)	Ка-р2-кр(8)	Ka-p2-Au(2)	Ka-p2-Au(6)	Ka-p2-Au(6)	Ka1-cp(5)	Ka1-cp(10)	Тримечание. Здест	тву проанализирс
<u>Ме</u> п/п	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	66	100	101	102	103	I	количес

\sim	\sim
ţa	le
m	ab
6	

Табли

Состав золота из включений в зернах платины из Казанской россыпи (мас. %)

(%)	Кристаллохимическая формула	$(\mathrm{Au}_{0.78}\mathrm{Pd}_{0.14}\mathrm{Cu}_{0.04}\mathrm{Ag}_{0.07}\mathrm{Pt}_{0.07})_{1.00}$	$(Au_{0.78} Pd_{0.14} Cu_{0.03} Pt_{0.02} Ag_{0.02})_{1.00}$	$(Au_{0,77} Pd_{0,13} Pt_{0,05} Cu_{0,04} Ag_{0,01})_{1,00}$	$ (Au_{0.78}Hd_{0.15}Ht_{0.03}Hd_{0.03}Hd_{0.03}) _{00}$	$\left \left(\mathbf{A} \mathbf{u}_{n \ rot}^{\text{u.r.b}} \mathbf{B} \mathbf{d}_{n \ rot}^{\text{u.r.b}} \mathbf{O} \mathbf{S}_{n \ nc}^{\text{u.r.b}} \mathbf{C} \mathbf{u}_{n \ rot}^{\text{u.r.b}} \right) \right _{1 \ nc}$	$\left \left(\mathbf{A} \mathbf{u}_{n,\tau}^{(1)} \mathbf{P} \mathbf{d}_{n,\tau}^{(1)} \mathbf{C} \mathbf{u}_{n,n}^{(0)} \mathbf{P} \mathbf{t}_{n,n}^{(0)} \right) \right _{0,0}$	$ (Au_{0,3} Pd_{0,0} Cu_{0,0} Pt_{0,0}) $	$\left[(Au_{n,\gamma}^{0}Ag_{n,\gamma}^{0}) \right]_{1,00}$	$\left \left(Au_{0,m} Pt_{0,n} Cu_{0,n} Fe_{0,n} \right) \right _{1,0,0}$	$\left \left(\mathbf{A} \mathbf{u}_{n} \mathbf{v} \mathbf{C} \mathbf{u}_{n} \mathbf{M} \mathbf{P}_{\mathbf{t}_{n}} \mathbf{M} \right) \right _{\mathbf{m}}$	$\left \left(\mathbf{A} \mathbf{u}_{0,81}^{\text{UZZ}} \mathbf{P} \mathbf{d}_{0,10}^{\text{UZZ}} \mathbf{D} \mathbf{t}_{0,07}^{\text{UZZ}} \mathbf{P} \mathbf{t}_{0,07}^{\text{UZZ}} \right) \right _{0,0}$	$(Au_{n_{77}}Bd_{n_{16}}Pt_{n_{03}}Cu_{n_{03}}Fe_{n_{01}})_{1,00}$	$ (Au_{0,ss} Pd_{0,07} Pt_{0,03} Cu_{0,02}) _{1,00}$	$ (Au_{0,67}Pt_{0,17}Pd_{0,06}Cu_{0,04}Fe_{0,04}Os_{0,07}) _{0,0}$	$ (Au_{0,s1}Pd_{0,19}) _{1,00}$	$ (Au_{0,8},Cu_{0,1},Pd_{0,6}) _{0,0}$	$(Au_{0.78}Cu_{0.14}Pd_{0.08})_{1.00}$	$(Au_{0,01}Pd_{0,07}Cu_{0,02})$	$(Au_{0.74}U_{0.14}Pd_{0.10}Ag_{0.00})_{1.00}$	$ (Au_{0.76}Pd_{0.13}Pt_{0.06}Cu_{0.03}Fe_{0.01}Ag_{0.01}) _{00}$	$ (Au_{0.76}Pd_{12}Cu_{0.06}Pt_{0.05}Fe_{0.01}) _{1.00}$	$(Au_{0.76}Pd_{0.13}Cu_{0.05}Pt_{0.04}Os_{0.01}Fe_{0.01})_{1.00}$	$(Au_{0,82}Pd_{0,10}Ag_{0,05}Pt_{0,02}Cu_{0,01})_{1,00}$	$ (Au_{0,81} Pd_{0,10} Ag_{0,08} Cu_{0,01}) _{1,00}$	$(Au_{0.86}Cu_{0.06}Pd_{0.04}Pt_{0.04})_{1.00}$	$ (\mathrm{Au}_{0.64}\mathrm{Pt}_{0.19}\mathrm{Cu}_{0.09}\mathrm{Pd}_{0.06}\mathrm{Fe}_{0.02})_{1.00} $	$ (Au_{0.74}Pd_{0.13}Cu_{0.10}Pt_{0.03})_{1.00} $	$(Au_{0.88}Pd_{0.06}Pt_{0.05}Cu_{0.01})_{1.00}$	$(\mathrm{Au}_{0.93}\mathrm{Pd}_{0.04}\mathrm{Pt}_{0.02}\mathrm{Ag}_{0.01})_{1.00}$	$ (Au_{0,81}Pd_{0,13}Pt_{0,04}Fe_{0,01}Cu_{0,01}) _{0,00}$	$(Au_{0.74}Pd_{0.18}Cu_{0.04}Pt_{0.03}Ag_{0.01})_{1.00}$	$(Au_{0.98}Pd_{0.02})_{1.00}$	$(Au_{0.76}Pd_{0.16}Cu_{0.08})_{1.00}$	$(Au_{0.76}Pd_{0.16}Cu_{0.08})_{1.00}$	$(Au_{0.7}Pd_{0.17}Cu_{0.08})_{1.00}$	$ (Au_{0.76} Pd_{0.16} Cu_{0.08}) _{100}$	$(Au_{0.75}Pd_{0.16}Cu_{0.09})_{1.00}$	$(Au_{0.86}Pd_{0.14})_{1.00}$
olacer (wt.	Сумма	6.66	99.87	99.64	99.67	100.00	100.75	100.55	100.96	100.11	100.10	99.81	100.96	99.08	100.16	100.00	100.00	100.00	100.00	100.00	99.28	100.39	100	99.43	98.96	100	100.82	99.90	99.74	99.11	100.39	99.66	99.27	99.34	99.74	99.01	99.63	62.66	100.00
Kazan J	Fe	1	Ι	Ι	Ι	I	0.14	I	Ι	0.15	I	Ι	0.20	I	1.37	Ι	Ι	Ι	I	Ι	0.45	0.18	0.26	0	0	0	0.48	Ι	0.16	Ι	0.24	Ι	Ι	Ι	Ι	Ι	Ι	I	I
om the	Ir		I	I	I	[[I	I	I	[I	I	I	Ι	I	I		I	I	Ι	I	0.36		I			I	I	I	I		I	I	Ι	I	Ι	Ι	1
rains fr	Os	1	Ι	Ι	Ι	6.07	I	I	I	I	I	Ι	I	Ι	2.02	Ι	Ι	I	Ι	Ι	0.42	Ι	1.09	I	Ι	I	Ι	Ι	I	I	I	I	Ι	I	Ι	Ι	Ι	I	I
latinum g	Pd	8.23	8.34	7.55	9.12	7.32	9.48	3.76	I	I	I	6.13	9.41	3.84	3.34	11.25	3.29	5.10	3.98	6.04	7.50	7.23	7.83	5.50	5.91	2.08	3.99	8.07	3.11	2.09	7.99	10.90	1.16	9.92	9.51	10.28	9.82	10.24	8.30
ons in p	Pt	2.61	3.76	5.06	2.88	I	4.06	3.45	I	5.81	3.49	2.28	3.90	3.55	18.53	Ι	Ι	Ι	I	Ι	6.3	5.08	3.89	2.35	0.00	3.75	21.16	3.45	4.73	1.77	4.27	3.40	Ι	Ι	Ι	Ι	Ι	I	I
d inclusi	Cu	1.59	1.34	1.47	1.34	0.84	1.60	2.12	I	1.01	1.21	2.30	1.22	0.49	1.63	Ι	4.58	5.02	0.58	5.50	1.01	2.16	1.70	0.43	0.40	2.23	3.44	3.58	0.30	I	0.26	1.56	I	2.78	3.01	3.07	3.11	3.19	I
on of gol	Ag	0.43	0.57	0.81	0.43			I	14.37			I	I	I	I	Ι	I	I	I	1.22	0.28	0.31		2.89	4.87		I	0.28	I	0.82	I	0.29	I	I	I	I	I		
ompositi	Au	87.04	85.86	84.75	85.9	85.77	85.46	91.23	86.59	89.07	87.21	89.1	86.23	91.21	73.27	88.75	92.13	89.88	95.44	87.24	83.32	85.44	84.88	88.27	87.79	91.94	71.76	84.52	91.45	94.43	87.63	83.51	98.12	86.64	87.23	85.66	86.71	86.36	91.70
emical co	Кол-во ан.	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1		1	1	-	-	1	m	-	1	1	б		-
Ch	№ анализа	22217d	22217e	22217f	22217h	22217u	16166g	16166w	16167i	16167v	16168j	16175d	16175k	16175u	16175z	16130v	16131i	16131r	16131x	16132d	16140k	161401	16140w	16141g	161411	16143i	16143m	16143q	16143r	16143t	16150d	16150r	23229jkl*	23221b	23221c	23221d	23221ghi*	23221j	23222f
	№ зерна	Ka10cp(10)01	Ka10cp(10)02	Ka10cp(10)03	Ka10cp(10)04	Ka10cp(10)05	Ka0p20M(3)	Ka0p20m(8)	Ka0p20m(11)	Ka0p20m(15)	Ka0p20m(19)	Ka0p20m(25)	Ka0p20m(28)	Ka0p20m(31)	Ka0p20M(32)	Ка0р20ж(6)	Ка0р20ж(10)	Ка0р20ж(14)	Ка0р20ж(14)	Ка0р20ж	Ka0p20ry6(3)	Ka0p20ry6(3)	Ka0p20ry6(3)	Ka0p20ry6(5)	Ka0p20ry6(5)	Ka0p20ry6(13)	Ka0p20ry6(14)	Ka0p20ry6(14)	Ka0p20ry6(15)	Ka0p20ry6(16)	Ka0p20ry6(23)	Ka0p20ry6(26)	Ka02pC0Pt(2)	Ka02pC0Pt1(8)	Ka02pC0Pt1(8)	Ka02pC0Pt1(8)	Ka02pC0Pt1(8)	Ka02pC0Pt1(8)	Ka02pC0Pt1(9)
	№ П/П	-	0	ω	4	S	9	2	~	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

МИНЕРАЛЬНЫЕ ВКЛЮЧЕНИЯ В ЗЕРНАХ ПЛАТИНЫ ИЗ КАЗАНСКОЙ РОССЫПИ

Рис. 4. Минеральные включения в изоферроплатине (Pt).

а – самородное золото (Au); б – сростки осмия (Os) и стибиопалладинита (PdSb), зерна ирарсита (Irs); в – сросток золота, ирарсита и лаурита (Lrt); г – сростки осмия и меренскиита (Mrn); д – сростки осмия, лаурита и минерала с идеализированной формулой Pd₅Te₂.

Fig. 4. Mineral inclusions in isoferroplatinum (Pt).

a – native gold (Au); 6 – intergrowths of osmium (Os) and stibiopalladinite (PdSb), irarsite grains (Irs); B – intergrowth of gold, irarsite and laurite (Lrt); r – intergrowths of osmium and merenskiite (Mrn); π – intergrowths of osmium, laurite and mineral with idealized formula Pd_sTe_s.

новообразованного высокопробного золота (Au 96–99 мас. %, Ag 1–2 мас. %). В отдельных случаях в составе золота отмечается примесь Cu (до 0.32 мас. %) (рис. 5).

Самородный осмий встречается в виде кристаллов с удлиненными сечениями толщиной до 5–10 мкм до 20 мкм в длину (рис. 4б) и ассоциирует с золотом и халькогенидами ЭПГ. Состав минерал сильно варьирует (табл. 3). Содержание Оs составляет 43.58–76.68 мас. %. Во всех анализах зафиксирован Ir (15.4–43.67 мас. %). Часто в составе минерала отмечаются Ru (0.57–26.06 мас. %), Rh (0.12–1.01 мас. %) и Fe (0.14–0.7 мас. %). Платина определена только в двух анализах: ее содержания не превышают 1.53 мас. %. Сульфиды представлены лауритом, эрликманитом, бауитом и не диагностированным точно минералом с формулой, близкой к (Ir,Os)₃S₂ (табл. 4).

Лаурит (RuS_2) образует кристаллы, близкие к прямоугольному сечению размером до 10–20 мкм (рис. 4в), и ассоциирует с золотом и сульфоарсенидами ЭПГ. Содержание Оs в пределах одного кристалла может варьировать от 23.29 до 27.15 мас. %. Содержит примеси Os, Rh, Pt, Se и As.

Эрликманит встречен в одном образце, где он вместе с богатым Os лауритом образует кайму вокруг платины мощностью до 20–40 мкм. В кайме наблюдаются включения многочисленных кристаллов осмия. В составе минерала отмечаются высокие содержания Ru вплоть до состава лаурита.

\mathfrak{S}	$\tilde{\mathbf{c}}$
ţa	le
m	йb
ĩõ	E
T_{G}	

Ŭ	Chemical composi	ition of osm	ium, iridi	um, rutł	enium a	and rhe	odium in	nclusior	sin pl	atinum fro	om the Kazan placer (wt. %)
<u>№</u> П/П	Проба (зерно)	№ анализа	Os	Ir	Ru	Rh	Pt	Pd	Fe	Сумма	Кристаллохимическая формула
-	Ka-p2-ry6(3)	16140m	94.78		3.47	1.08	1.04	0.28	1	100.64	$(Os_{0.90}Ru_{0.06}Rh_{0.02}Pt_{0.01}Pd_{0.01})_{1.00}$
7	Ka-p2-ry6(3)	16140x	96.11	Ι	0.56	0.36	1.64	0.67	I	99.35	$(Os_{0.95}Pt_{0.02}Pd_{0.01}Ru_{0.01}Rh_{0.01})_{1.00}$
З	Ka-p2-ry6(4)	16141b	90.79	1.08	0.41	0.63	4.93	0.69	0.52	99.05	$(Os_{0.89}Pt_{0.05}Fe_{0.02}Pd_{0.01}Ir_{0.01}Rh_{0.01}Ru_{0.01})_{1.00}$
4	Ka-p2-ry6(6)	161410	88.10	I	0.64	0.53	9.08		0.77	99.12	$(Os_{0,87}Pt_{0,09}Fe_{0,07}Ru_{0,01}Rh_{0,01})_{1,00}$
5	Ka-p2-ry6(7)	16141t	75.83	15.82	2.74	0.60	4.64		0.38	100.00	$(Os_{0.73}Ir_{0.15}Ru_{0.05}Pt_{0.05}Fe_{0.01}Rh_{0.01})_{1.00}$
9	Ka-p2-ry6(13)	16143j*	91.45	6.50	I	0.49		0.41	0.28	100.00	$(Os_{0,s_0}Ir_{0,0}Cu_{0,0}Fe_{0,01}Rh_{0,01}Pd_{0,01})_{0,0}$
7	Ka-p2-Au(6)	16137m	76.78	10.63	1.49	1.67	8.49		0.94	I	$(Os_{0.73}Ir_{0.010}Pt_{0.08}Fe_{0.03}Rh_{0.03}Rh_{0.03})_{1.00}$
8	Ka-p2-Au(13)	16137y	88.92	7.21	2.44	0.37	1.06		I	100.00	$(Os_{0,87}Ir_{0.07}Ru_{0.04}Pt_{0.01}Rh_{0.01})_{1.00}$
6	Ka-p2-m(3)	16166f	96.50	I	0.55	I	2.63		0.28	79.97	$(Os_{0.9}, Pt_{0.01}, Ru_{0.01}, Fe_{0.01})_{1.00}$
10	Ka-p2-m(15)	16167u	73.46	2.00	I	I	22.54		2.00	100.00	$(Os_{0.70} Pt_{0.71} Fe_{0.07} Ir_{0.07})_{1.00}$
11	Ka-p2-m(18)	16168g	85.61	9.68	0.81	0.30	2.58		0.21	99.20	$(Os_{0.85}Ir_{0.10}Pt_{0.02}Ru_{0.01}Fe_{0.01}Rh_{0.01})_{1.00}$
12	Ка-р2-м(18)	16168h	79.83	14.71	1.90	0.43	3.19		0.22	100.28	$(Os_{0.78}Ir_{0.14}Ru_{0.03}Pt_{0.03}Rh_{0.01}Fe_{0.01})_{1.00}$
13	Ka-p2-m(21)	16168r	94.54	I	I	I	5.46		I	100.00	$(Os_{0.9}, Pt_{0.05})$
14	Ка-р2-м(23)	16168a'	62.39	28.57	0.46	0.67	6.97		0.61	99.68	$(Os_{0.61}Ir_{0.28}Pt_{0.07}Fe_{0.07}Fe_{0.07}Rh_{0.01}Ru_{0.01})_{1.00}$
15	Ка-р2-м(29)	16175p	83.39	6.67	1.86	1.00	5.49		0.69	99.11	$(Os_{0.81} Ir_{0.06} Pt_{0.05} Ru_{0.03} Fe_{0.02} Rh_{0.02})_{1.00}$
16	Ка-р2-ж(3)	16130d	93.17	3.01	0.41		2.84			99.43	$(Os_{0.93}Ir_{0.03}Pt_{0.03}Ru_{0.01})_{1.00}$
17	Ка-р2-ж(4)	16130k	87.62		1.26	2.43	8.15		0.54	100.00	$(Os_{0.84}Pt_{0.08}Fe_{0.02}Rh_{0.04}Ru_{0.02}Fe_{0.02})_{1.00}$
18	Ка-р2-ж(6)	16130u	66.54	23.00	1.71	0.69	6.71	I	0.45	99.10	$(Os_{0.65}Ir_{0.02}Pt_{0.07}Ru_{0.03}Fe_{0.02}Rh_{0.01})_{1.00}$
19	Ка-р2-ж(7)	16130b'	90.13	3.01	1.11	Ι	5.42	Ι	0.56	100.24	$(Os_{0.88}Pt_{0.05}Ir_{0.03}Ru_{0.02}Fe_{0.02})_{1.00}$
20	Ка-р2-ж(16)	16132j	86.67	2.70	2.57	0.45	6.61	I	0.60	99.59	$(Os_{0.84}Pt_{0.06}Ru_{0.05}Ir_{0.02}Fe_{0.02}Rh_{0.01})_{1.00}$
21	Ка-р2-ж(16)	161320	84.49	3.35	2.66	0.53	7.51	Ι	0.84	99.38	$(Os_{0.81} Pt_{0.07} Ru_{0.05} Ir_{0.03} Fe_{0.03} Rh_{0.01})_{1.00}$
22	Ка-р2-ж(19)	16132u	68.78	7.91	0.44	2.18	18.78	I	1.91	100.00	$(Os_{0.65}Pt_{0.17}Ir_{0.07}Fe_{0.06}Rh_{0.04}Ru_{0.01})_{1.00}$
23	Ka-p2-xp(2)	16139h	69.64	23.26	2.14	1.35	3.37	I	0.23	100.00	$(\mathrm{Os}_{0.68}\mathrm{Ir}_{0.22}\mathrm{Ru}_{0.04}\mathrm{Pt}_{0.03}\mathrm{Rh}_{0.02}\mathrm{Fe}_{0.01})_{1.00}$
24	Ka-2pC-Pt(6a)	23231a	12.35	74.11	1.04	2.36	9.37	I	0.58	99.81	$(\mathrm{Ir}_{0.71}\mathrm{Os}_{0.12}\mathrm{Pt}_{0.09}\mathrm{Rh}_{0.04}\mathrm{Ru}_{0.02}\mathrm{Fe}_{0.02})_{1.00}$
25	Ka-2pC-Pt(6a)	23231b	12.24	75.85	0.74	2.09	8.45			99.39	$(\mathrm{Ir}_{0.75}\mathrm{Os}_{0.12}\mathrm{Pt}_{0.08}\mathrm{Rh}_{0.04}\mathrm{Ru}_{0.01})_{1.00}$
26	Ka-2pC-Pt(6a)	23231c	11.80	77.09	0.70	1.85	8.41	I	I	99.85	$(\mathrm{Ir}_{0.76}\mathrm{Os}_{0.12}\mathrm{Pt}_{0.08}\mathrm{Rh}_{0.03}\mathrm{Ru}_{0.01})_{1.00}$
27	Ka-2pC-Pt(3)	23217d	88.35	11.47	Ι	I	I	I	I	99.82	$(Os_{0.89}Ir_{0.11})_{1.00}$
28	Ka-2pC-Pt(3)	23217e	82.29	16.95	0.41	I	I	I	I	99.65	$(Os_{0.82}Ir_{0.17}Ru_{0.01})_{1.00}$
29	Ka-2pC-Pt(3)	23217f	81.61	16.73	1.49	I	I	I	I	99.83	$(Os_{0.81}Ir_{0.16}Ru_{0.03})_{1.00}$
30	Ka-2pC-Pt1(4)	23218c	84.41	12.36	2.14	0.31	I			99.22	$(Os_{0.83} Ir_{0.12} Ru_{0.04} Rh_{0.1})_{1.00}$
31	Ka-2pC-Pt1(4)	23218d	80.09	18.05	0.49	0.23	I	I	0.6	99.46	$(Os_{0.79}Ir_{0.18}Fe_{0.02}Ru_{0.01})_{1.00}$
32	Ka-2pC-Pt1(8)	23221e	86.21	12.19	1.49		I			99.89	$(Os_{0.85}Ir_{0.12}Ru_{0.03})_{1.00}$
d_{II}	<i>уимечание</i> . * – ан: *	ализ содерж	ит 0.87 м	ac. % Cu							
NC	te. * – analysis co.	ntains U.8 / V	vt. % Cu								

Рис. 5. Пробность золота Казанской россыпи.

а – центральная часть золотин (n = 29); б – включения золота в платине (n = 35).

Fig. 5. Fineness of gold from the Kazan placer.

a – central part of gold (n = 29); 6 – inclusions of gold in platinum (n = 35).

Бауит (Rh_2S_3) (?) выявлен в виде единичного включения размером до 30 мкм с удлиненным сечением в платине. В составе отмечаются высокие содержания Cu (до 23.54 мас. %).

Минерал с формулой, близкой к $(Ir; Os)_3 S_2$, образует внешнюю кайму мощностью до 30 мкм вокруг зерна самородного иридия. Соотношение между Ir и Os в минерале слабо варьирует. Отмечаются примеси Fe, Bi и Ru. В настоящее время минерал с такой формулой не известен, однако находки минерала подобного состава известны на месторождении Витватерсранд (ЮАР) (Toma, Murphy, 1978).

Сульфоарсениды представлены ирарситом и холлингуортитом (?) (табл. 5).

Ирарсит найден в двух зернах платины, где он образует кристаллы с треугольным или четырехугольным сечением размером до 10–15 мкм (рис. 46). Минерал ассоциирует с золотом, осмием, лауритом и недиагностированными соединениями с формулой, близкой к Pd₁₀Sb₃Te. Ирарсит не стехиометричен, что для него типично (mindat.org).

Холлингуортит (?) выявлен в одном зерне платины, где он образует «россыпь» кристаллов трапециевидного сечения размером до 40–50 мкм (рис. 4б). Ассоциирует с самородным осмием и стибиопалладинитом. Подобно ирарситу минерал не стехиометричен.

Минералы Sb представлены стибиопалладинитом и не диагностированным точно соединением с формулой, близкой к Pd₁₀Sb₃Te (табл. 6).

Стибиопалладинит выявлен в одном зерне платины, где вместе с холлингуортитом он образует многочисленные зерна вытянутой прямоугольной формы до 50 мкм в длину (рис. 4б). Часто срастается с осмием. В составе стибиопалладинита отмечаются высокие содержания Pt (до 42.63 мас. %) (табл. 6).

Минерал с формулой, близкой к $Pd_{10}Sb_{3}Te$, выявлен в двух зернах платины в виде включений (рис. 4в). Минерал образует сростки и кристаллы с изометричным сечением размером до 20–40 мкм, ассоциирует с осмием и ирарситом. Соотношения между основными компонентами значительно варьируют даже в пределах одного зерна, отмечаются примеси Pt, Fe и As (табл. 6).

Теллуриды представлены меренскиитом, теллуридом палладия с примерной формулой Pd_5Te_2 и теллуридом платины с формулой, близкой к Pt_5Te_8 (табл. 7).

Меренскиит выявлен в одном зерне платины, где он образует округлые зерна размером до 5–7 мкм (рис. 4г) и ассоциирует с осмием. В составе минерала отмечается примесь Sb.

Минерал с формулой, близкой к Pd_5Te_2 встречен в одном зерне платины (рис. 4д), где он образует округлые зерна размером до 10–15 мкм и ассоциирует с осмием и лауритом. В составе минерала отмечается примесь Sb.

Минерал с формулой, близкой к Pt_5Te_8 выявлен в одном зерне платины, где он образует сростки с осмием и минералом ~ $Pd_{10}Sb_3Te$. Размер сростка достигает 15 мкм, а размер зерна ~ Pt_5Te_8 составляет около 7 мкм. В составе минерала отмечается примесь Rh и Pd.

Среди включений в платине также отмечаются сульфиды родия и рутения со значительной примесью селена, вплоть до формального соответствия классу селенидов (Белогуб и др., 2019). В одном случае существенная примесь Se присутствует в теллуриде Pt.

4	
а	
'n	
n	
jā.	
ā.	
H	

Состав сульфидов ЭШГ из Казанской россыпи (мас. %)

МИНЕРАЛЬНЫЕ ВКЛЮЧЕНИЯ В ЗЕРНАХ ПЛАТИНЫ ИЗ КАЗАНСКОЙ РОССЫПИ

43

Примечание. Формулы минералов рассчитаны на один атом серы.

Note. The formulas are recalculated to one S atom.

МИНЕРАЛОГИЯ 6(1) 2020

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Co	CTAB ME	инерало	в Sb из	Казанс	кой рос	сыпи (м	iac. %)		1 aonuya v Table 6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					U U	hemical	compo	o uoition o	f Sb mir	erals fr	om the F	vazan p	lacer (wt.	(%)	ſ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	№ п/п	№ ан.	Fe	Cu	As	Ru	Rh	Pd	Sb	Te	Pt	Ag	Сумма	Кристаллохимическая формула		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									Стибио	паллади	инит					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	23229b						41.42	26.71	I	31.31		99.44	$({ m Pt}_{_{1}}{ m }_{_{2}}{ m Pd}_{_{3}}{ m }_{_{3}}{ m }_{7})_{ m s}{ m }_{04}{ m Sb}_{ m 200}$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	23229c	I					42.35	27.21	I	28.53	1.49	99.57	$(A_{g_{11}}, P_{111}, P_{111}, P_{121}, S_{121}, S_{201})$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ŝ	23229d						42.63	27.07	I	27.95	2.07	99.73	$(Ag_{017}Pt_{1.9}Pd_{3.3}), gSb_{2.00}$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	23229e						40.43	26.82	I	30.20	1.73	99.18	$(Ag_{01}, Pt_{14}, Pd_{347}), \dots Sb_{200}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	23229f						42.75	26.88	I	30.05		99.68	$(\mathbf{Pt}_{140}^{-1}\mathbf{Pd}_{360}^{-1})_{600} \mathbf{Sb}_{200}^{-100}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	23229h				I	I	42.22	26.71	I	30.28	I	99.21	$(\mathbf{Pt}_{1,42}\mathbf{Pd}_{3,64}, 5, 06\mathbf{Sb}_{2,00})$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	23229i	I	Ι	I		I	42.27	26.64	Ι	30.86	I	99.78	$(Pt_{1.45}Pd_{3.65})_{5.10}Sb_{2.00}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									~P	$1_{10}Sb_{3}Te$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	16140d	I	Ι	0.50	I	I	60.19	23.57	5.76	9.97	1	100.00	$(Pt_{0,77}Pd_{s,57})_{0,20}(As_{0,10}Sb_{2,00})_{3,00}Te_{0,58}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	16140f	0.39	I	I			59.02	22.1	6.59	11.9		100.00	$(Fe_{0,1}, Ft_{101}, Fd_{9,22})_{10,35}Sb_{3,00}Te_{0,85}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	16140g	0.97	0.22			I	56.98	18.77	7.69	15.37	I	100.00	$(Cu_{0.07}Fe_{0.34}Pt_{1.54}Pd_{10.48})_{12.47}Sb_{3.00}Te_{1.17}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	16140h		I		0.18		59.79	23.35	6.11	9.71		99.14	$(Ru_{0.03}Pt_{0.78}Pd_{8.84})_{0.65}Sb_{3.00}Te_{0.75}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	16140i	I	I	I			61.03	22.17	8.35	8.78		100.34	$(Pt_{0.74} Pd_{0.51})_{10.25} Sb_{3.00} Te_{1.08}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	16140j	0.40	Ι		Ι	0.46	57.84	20.66	10.34	10.12	I	99.83	$(\mathrm{Rh}_{0.08}\mathrm{Fe}_{0.13}\mathrm{Pt}_{0.92}\mathrm{Pd}_{9,67})_{10.79}\mathrm{Sb}_{3.00}\mathrm{Te}_{1.43}$		
15 16141 - 1.87 - - 6.3.25 21.03 7.34 5.43 - 99.02 (Prio2Pdvin) sof(AsissiSS bzin) sof(Asis Asis Asis Asis Asis Asis Asis Asis	14	16141c		Ι	2.56	Ι	0.39	62.9	20.92	8.08	5.26	I	100.11	$(Rh_{0.06}Pt_{0.39}Pd_{8.66})_{9.11}(As_{0.50}Sb_{2.56})_{3.00}Te_{0.92}$		
Примечание. Формулы стибиопалладинита рассчитана на два аниона, минерала с идеализированной формулой $Pd_{10}Sb_{3}Te - на сумму (Sb + As), равную 3. Note. The formulas of stibiopalladinite are recalculated to two anions. The formulas of the idealized mineral Pd_{10}Sb_{3}Te are recalculated to Sb + As sum of 3. Corras renuyputos JIIT Kaзанской pocchint (мас. %) Tadmura 7 Corras renuyputos JIIT Kaзанской pocchint (мас. %) Tadmura 7 Corras renuyputos JIIT Kaзанской pocchint (мас. %) Tadmura 7 Corras renuyputos JIIT Kaзанской pocchint (мас. %) Tadmura 7 Corras renunciation of PGE tellurides from the Kazan placer (wt. %) Tadmura 7 Memencentur Mainue Gosto Sb (Gosto) Tadmura 7 Na Tadmura 7 Mepenckuur Mepenckuur 1 240166 C - di.33.35 - di.00.00 Pd_{2,00}(Te10Sb100) Mepenckuur 2 240166 - di.33.35 - di.00.00 Pd_{2,00}(Te10Sb100) Mepenckuur $	15	16141f			1.87			63.25	21.03	7.44	5.43	I	99.02	(Pt0.42Pd9.07)9.50(AS0.38Sb2.62)3.00Te0.88		
Table 7 Corras relayputos '3III Kasanckoň pocchun (nac. %) Tadôtuna 7 Chemical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 Memical composition of PGE tellurides from the Kazan placer (wt. %) Table 7 A tell reliable 7 Tell reliable 7 A tell reliable 7 Tello 0000	Примеча. Note. The	<i>ние</i> . Форму : formulas o	лы сти f stibic	юполал palladi	пладин nite are	ита расс 5 recalcu	считана lated to	на два є two ani	иниона, 1 ons. The	иинерал formula	а с идеал is of the	пизиров idealizec	анной фо 1 mineral	рмулой $Pd_{10}Sb_{3}Te - Ha cymmy (Sb + As)_{1}$ $Pd_{10}Sb_{3}Te$ are recalculated to Sb + As sun	равную 3. m of 3.	
Chemical composition of PGE tellurides from the Kazan placer (wt. %) Ne II/II Ne II/II Ne II/II Ne II/II Chemical composition of PGE tellurides from the Kazan placer (wt. %) Ne II/II Ne II/II Pd As Sb I Te Pt Cymma Kpurraunoxmmuseckan dopmyna Ne II/II 2 40166 - 63.48 - 1.20 36.14 - Pd_{104}(Te_{097}Sb_{003})_{100} 2 40166 - - - Pd_{134}(Te_{099}Sb_{010})_{100} 2 40166 - <th co<="" td=""><td></td><td></td><td></td><td></td><td></td><td>Coc</td><td>TAB TC.</td><td>ридуги</td><td>JII€ a(</td><td>Казанс</td><td>кой росс</td><td>сыпи (м</td><td>iac. %)</td><td></td><td>Tabnuya 7 </td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td>Coc</td> <td>TAB TC.</td> <td>ридуги</td> <td>JII€ a(</td> <td>Казанс</td> <td>кой росс</td> <td>сыпи (м</td> <td>iac. %)</td> <td></td> <td>Tabnuya 7 </td>						Coc	TAB TC.	ридуги	JII€ a(Казанс	кой росс	сыпи (м	iac. %)		Tabnuya 7
№ п/п № ан. Fe Se Rh Pd As Sb Te Pt Сумма Кристаллохимическая формула 1 24016e - - - 63.48 - 3.17 33.35 - 100.00 Pd_{2.01}(Te_{0.97}Sb_{0.03})_{100} 2 24016f - - 63.48 - 3.17 33.35 - 100.00 Pd_{2.08}(Te_{0.91}Sb_{0.03})_{100} 2 24016g - - 61.89 - 3.17 33.35 - 100.00 Pd_{2.08}(Te_{0.91}Sb_{0.03})_{100} 2 24016g - - 61.89 - 3.17 33.35 - 100.00 Pd_{2.04}(Te_{0.91}Sb_{0.03})_{100} 3 24016g - - 61.34 - 7.93 23.93 - 90.29 Pd_{2.03}(Te_{0.99}Sb_{0.10})_{100} Pd_{2.02}(Te_{0.99}Sb_{0.23})_{2.00} - 2.32256 - - 7.93 23.93 - 99.43 Pd_{2.03}(Te_{1.99}Sb_{0.63})_{2.00} - 2.322256					Ché	emical c	omposi	tion of l	CE tell	urides f	rom the	Kazan	placer (w	rt. %)	Table	
Меренскиит 1 24016e - - 62.65 - 1.20 36.14 - 100.00 Pd_{2.01}(Te_{0.97}Sb_{0.03})_{1.00} 2 24016f - - - 63.48 - 33.35 - 100.00 Pd_{2.05}(Te_{0.90}Sb_{0.10})_{1.00} 2 24016f - - - 61.89 - 33.35 - 100.00 Pd_{2.05}(Te_{0.90}Sb_{0.10})_{1.00} 3 24016g - - 61.89 - 36.13 - 100.00 Pd_{2.05}(Te_{0.90}Sb_{0.10})_{1.00} 4 23225c - - - 69.43 - 99.43 Pd_{5.03}(Te_{1.09}Sb_{0.69}Sb_{0.51})_{2.00} 6 16140e 0.36 1.23 10.9 17.88 - 99.43 Pd_{5.03}(Te_{1.09}Sb_{0.69}A_{0.21})_{2.00}	№ п/п	№ ан.		e L	Se	Rh	Pd	As	Sb	Te	Pt	Cymm	a K _l	эисталлохимическая формула		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									Мерена	СКИИТ						
2 24016f - - - 63.48 - 3.17 33.35 - 100.00 Pd_{1.94}(Te_{0.90}Sb_{0.10})_{1.00} 3 24016g - - 61.89 - 3.17 33.35 - 100.00 Pd_{1.94}(Te_{0.90}Sb_{0.10})_{1.00} 4 23225c - - 67.42 - 7.93 23.93 - 99.29 Pd_{5.02}(Te_{1.99}Sb_{0.51})_{2.00} 5 23225c - - 69.43 - 99.43 Pd_{5.03}(Te_{1.99}Sb_{0.69}As_{0.21})_{2.00} 6 16140e 0.36 10.19 2.44 - - 55.36 30.79 100.36 (Pt_{2.80Rh1.75Pd_0.41Fe_{0.11})_{5.07}(Te_{7.72Se_{0.28})_{5.00}} 7m/wevanue Фолмулты минералов рассчитаны на лва (Pd.Te.) и восемь (Pt.Te.) атомов Te и cvMMY Te и Sb. равную 1 (меренскиит). 100.56 (Pt_{2.8028})_{5.00}	1	24016	0				62.65		1.20	36.14		100.00	0	$\mathrm{Pd}_{2.01}(\mathrm{Te}_{0.97}\mathrm{Sb}_{0.03})_{1.00}$		
3 24016g - - 61.89 - 3.81 34.3 - 100.00 Pd ₁₉₄ (Te ₀₉₀ Sb _{0.10})1.00 4 23225c - - - 67.42 - 7.93 23.93 - 99.29 Pd _{5.02} (Te ₁₄₉ Sb _{0.51})2.00 5 23225c - - 69.43 23.93 - 99.29 Pd _{5.03} (Te _{1.09} Sb _{0.69} As _{0.21})2.00 6 16140c 0.36 1.23 10.19 2.44 - - 55.36 30.79 100.36 (Pt _{2.80} Rh _{1.75} Pd _{0.41} Fe _{0.11})s.or(Te ₇₇₂ Se _{0.28})s.00	7	24016i	f				63.48	Ι	3.17	33.35	Ι	100.00	0	$\mathrm{Pd}_{2.08}^{-}(\mathrm{Te}_{0.91}\mathrm{Sb}_{0.09})_{1.00}^{-}$		
4 23225c - - 67.42 - 7.93 23.93 - 99.29 Pd _{5.02} (Te ₁₄₉ Sb _{0.51}) _{2.00} 5 23225c - - - 69.29 Pd _{5.03} (Te _{1.09} Sb _{0.69} As _{0.21}) _{2.00} 6 16140e 0.36 10.19 2.44 - - 55.36 30.79 100.36 (Pt _{2.80} Rh _{1.75} Pd _{0.41} Fe _{0.11}) _{5.07} (Te _{7.72} Se _{0.28}) _{8.00} <i>Thuweunue</i> domwritte mutedation bacceptarents ha .ma (Pd. Te.) is accerta (Pt. Te.) aroone Te in common Te in Sb. Daberto 1 (Medetermut).	3	24016	ь <u>п</u>				61.89		3.81	34.3	Ι	100.00	0	$\mathrm{Pd}_{1.94}(\mathrm{Te}_{0.90}\mathrm{Sb}_{0.10})_{1.00}$		
4 23225c - - - 67.42 - 7.93 23.93 - 99.29 Pd _{5.02} (Te _{1.49} Sb _{0.51})_{2.00} 5 23225c - - 6 10.9 17.88 - 99.43 Pd _{5.03} (Te _{1.49} Sb _{0.64} As _{0.21})_{2.00} 6 16140c 0.36 1.23 10.19 2.44 - - 55.36 30.79 100.36 (Pt _{2.80} Rh _{1.75} Pd _{0.41} Fe _{0.11}) _{5.07} (Te _{7.72} Se _{0.28}) _{5.00}			-					·	~Pd5	Te ₂						
5 23225e - - 68.62 2.04 10.9 17.88 - 99.43 Pd _{5.03} (Te _{1.09} Sb _{0.69} As _{0.21}) _{2.00} 6 16140e 0.36 1.23 10.19 2.44 - - 55.36 30.79 100.36 (Pt _{2.80} Rh _{1.75} Pd _{0.41} Fe _{0.11}) _{5.07} (Te _{7.72} Se _{0.28}) _{8.00} 17лимечание Фолмулты минералов рассчитаны на лва (Pd.Te.) и восемь (Pt.Te.) атомов Те и Sb. равную 1 (меренскиит). 10 2	4	232250	0				67.42	I	7.93	23.93	Ι	99.29		$\mathrm{Pd}_{5,02}(\mathrm{Te}_{1,49}\mathrm{Sb}_{0,51})_{2,00}$		
~Pt ₅ Te ₈ 6 16140e 0.36 1.23 10.19 2.44 - 55.36 30.79 100.36 (Pt _{2.80} Rh _{1.75} Pd _{0.41} Fe _{0.11}) _{5.07} (Te _{7.72} Se _{0.28}) _{8.00} <i>Пиимечание</i> Фолмулты минералов рассчитаны на лва (Pd.Te.) и восемь (Pt.Te.) атомов Те и сумму Те и Sb. равную 1 (меренскиит).	5	232256				I	68.62	2.04	10.9	17.88	Ι	99.43		$Pd_{5.03}(Te_{1.09}Sb_{0.69}As_{0.21})_{2.00}$		
6 16140e 0.36 1.23 10.19 2.44 - - 55.36 30.79 100.36 (Pt _{2.80} Rh _{1.75} Pd _{0.41} Fe _{0.11}) _{5.07} (Te _{7.72} Se _{0.28}) _{8.00} Примечание Фолмулты минералов рассчитаны на лва (Pd.Te.) и восемь (Pt.Te.) атомов Те и сумму Те и Sb. равную 1 (меренскиит).									$\sim Pt_5$	Te ₈						
Пиимечание. Формулы минералов рассчитаны на лва (Pd.Te.) и восемь (Pt.Te.) атомов Te и сумму Te и Sb. равную 1 (меренскиит).	9	16140	e 0.	.36 1	.23	10.19	2.44			55.36	30.79	100.30	6 (Pt _{2.8}	${}_{0}Rh_{1.75}Pd_{0.41}Fe_{0.11})_{5.07}(Te_{7.72}Se_{0.28})_{8.00}$		
	Примеча	тис Форму	ИН МИ	Нерало	NR DACCT	читаны	на два ((Pd Te.)	и восем	h (Pt Te) aromor	. Те и cv	лми Те и	Sh. равную 1 (меренскиит).		
							/	4)	à						

МИНЕРАЛОГИЯ 6(1) 2020

Хромшпинелиды (феррохромиты и магнезиохромиты) ранее были описаны В.В. Зайковым с соавторами (2018). Они образуют округлые изометричные зерна размером до около 30–70 мкм.

Обсуждение результатов и заключение

Подобно платине из других россыпей (Миасская, Байрамгуловская и Малоиремельская) платина Казанской россыпи содержит множество включений халькогенидов ЭПГ (Зайков и др., 2016а, б). По мнению И.Д. Толстых с соавторами (1997) сульфиды, селениды и теллуриды ЭПГ формируются при эпигенетическом воздействии на типичные минералы ЭПГ офиолитов поздних гидротерм.

По данным ЛА-ИСП-МС анализа (Артемьев, Зайков, 2018), платина Казанской россыпи обогащена (по сравнению с Малоиремельской) золотом в 50 раз, серебром – в 5 раз, ртутью – в 10 раз и молибденом – в 50 раз. Вероятно, большая степень обогащения платины Казанской россыпи многими халькофильными и благороднометалльными элементами связана с недалеким переносом от коренного источника эрозии. Важными структурными примесями для определения источника платины, вне зависимости от окатанности и степени преобразования, могут служить содержания Fe, Co, Ni, V и Cr.

Хромшпинелиды Казанской россыпи имеют более низкие содержания Сг по сравнению с хромшпинелидами Ингульской, Малоиремельской и Байрамгуловской россыпей (Зайков и др., 2018). Существует дискуссия о возможных источниках формирования Казанской россыпи (Зайков и др., 2018). Возможно, что близким источником минералов группы платины могли быть ультрамафит-габбровые ассоциации, распространенные в пределах Гогинского массива.

Авторы благодарят Е.В. Белогуб, И.Ю. Мелекесцеву за консультации и К.А. Новоселова за участие в анализе проб. Работа выполнена в рамках государственной бюджетной темы «Минералого-геохимическая эволюция и металлогения гидротермальных, аутигенных и гипергенных рудообразующих систем» № НИОКТР АААА-А19-119061790049-3.

Литература

Артемьев Д.А., Зайков В.В. (2018) Методика ЛА-ИСП-МС анализа и элементы-примеси в самородной платине из россыпей Южного Урала. *Геоархеология и археологическая минералогия-2018*. Миасс: Институт минералогии УрО РАН, 161–165.

Баранников А.Г. (2006) Золотоносность Гогинского рудно–россыпного района (Южный Урала). Екатеринбург, УГГУ, 197 с.

Белогуб Е.В., Зайкова Е.В., Котляров В.А., Шиловских В.В., Бритвин С.Н., Паутов Л.А. (2019) Селен в минералах элементов группы платины из золотоносных россыпей Южного Урала. Минералогические музеи 2019. Минералогия вчера, сегодня, завтра. Материалы конференции. Санкт-Петербург, СПбГУ, 87–89.

Зайков В.В., Котляров В.А., Зайкова Е.В., Крайнев Ю.Д. (2016а) Зональные зерна рутения из Мало-Иремельской россыпи (Южный Урал). Металлогения древних и современных океанов-2016. От минералогенеза к месторождениям. Миасс: Институт минералогии УрО РАН, 219–224.

Зайков В.В., Мелекесцева И.Ю., Котляров В.А., Зайкова Е.В., Крайнев Ю.Д. (2016б) Сростки минералов ЭПГ в Миасской россыпной зоне (Южный Урал) и их коренные источники. *Минералогия*, **4**, 31–47.

Зайков В.В., Таиров А.Д., Зайкова Е.В., Юминов А.М., Котляров В.А. (2016в) Благородные металлы в рудах и древних золотых изделиях Центральной Евразии. Челябинск, Каменный пояс, 314 с.

Зайков В.В., Савельев Д.Е., Зайкова Е.В. (2018) Природа микровключений хромшпинелидов в зернах платиноидов из золотых россыпей Южного Урала. Записки РМО, (5). 27–40.

Петровская Н.В. (1973) Самородное золото. М., Наука, 345 с.

Сигов А.П., Ломаев А.В., Сигов В.Л., Стороженко Л.Е., Хрыпов В.Н., Шуб И.З. (1971) Россыпи Урала, условия их образования, размещения и элементы геоморфологического прогноза. *Геоморфология*, 1, 28–38.

Толстых Н.Д., Кривенко А.П., Поспелова Л.Н. (1997) Необычные соединения иридия, осмия и рутения с селеном, теллуром и мышьяком из россыпей реки Золотой (Западный Саян). *Записки ВМО*, ч. СХХVІ, (6), 23–34.

Zaykov V.V., Melekestseva I.Yu., Zaykova E.V., Kotlyarov V.A., Kraynev Yu.D. (2017) Gold and platinum group minerals in placers of the South Urals: composition, microinclusions of ore minerals and primary sources. *Ore Geology Reviews*, **85**, 299–320

Toma S.A., Murphy S. (1978) Exsolution of gold from detrital platinum-group metal grains from Witwatersrand auriferous conglomerates. *Canadian Mineralogist*, **16**, 641–650. www.mindat.org

References

Artem'ev D.A., Zaykov V.V. (2018) [LA-ISP-MS analysis and trace elements in native platinum from the Southern Urals placers]. *Geoarheologiya i arheologicheskaya mineralogiya-2018* [*Geoarchaeology and archaeological mineralogy-2018*]. Miass, IMin UB RAS, 161–165. (in Russian)

Barannikov A.G. (2006). [The Gogino gold-bearing placer district (Southern Urals)]. Yekaterinburg, UGGU, 197 p. (in Russian)

Belogub E.V., Zaykova E.V., Kotlyarov V.A., Shilovskikh V.V., Britvin S.N., Pautov L.A. (2019) [Selenium in minerals of platinum group elements from goldbearing placers of the southern Urals]. *Mineralogicheskie muzei-2019*. *Mineralogiya vchera, segodnya, zavtra.* [*Mineralogical museums-2019*. *Mineralogy: yesterday, today and tomorrow*]. St. Petersburg, St. Petersburg State University, 87–89 (in Russian)

Petrovskaya N.V. (1997). Native gold. Moscow, Nauka, 345 p. (in Russian).

Sigov A.P., Lomaev A.V., Sigov V.L., Storozhenko L.E., Khrypov V.N., Shub I.Z. (1971) [The Urals placers, conditions of their formation, location and elements of geomorphological forecast]. *Geomorfologiya* [*Geomorphology*], 1, 28–38. (in Russian).

Tolstykh N.D., Krivenko A.P., Pospelova L.N. (1997). [Unusual compounds of iridium, osmium and ruthenium with selenium, tellurium and arsenic from placers of the Zolotaya River (western Sayan)]. *Zapiski VMO [Proceedings of the Russian Mineralogical Society]*, (6), 23–34. (in Russian). **Toma S.A., Murphy S.** (1978) Exsolution of gold from detrital platinum-group metal grains from Witwatersrand auriferous conglomerates. *Canadian Mineralogist*, **16**, 641-650.

www.mindat.org

Zaykov V.V., Kotlyarov V.A., Zaykova E.V., Krainev Yu.D. (2016a). [Zonal ruthenium grains from the Maly Iemel placer (South Urals)] Metallogeniya drevnikh i sovremennykh okeanov-2016. Ot mineralogeneza k mestorozhdeniyam [Metallogeny of ancient and modern oceans-2016. From mineralogenesis to deposits]. Miass, IMin UB RAS, 219–224. (in Russian)

Zaykov V.V., Melekestseva I.Yu., Kotlyarov V.A., Zaykova E.V., Krainev Yu.D. (20166) [Intergrowths of PGE minerals in the Miass placer zone and their primary sources]. *Mineralogiya* [*Mineralogy*], 4, 31–47. (in Russian)

Zaykov V.V., Melekestseva I.Yu., Zaykova E.V., Kotlyarov V.A., Kraynev Yu.D. (2017). Gold and platinum group minerals in placers of the South Urals: composition, microinclusions of ore minerals and primary sources. *Ore Geology Reviews*, **85**, 299–320.

Zaykov V.V., Savel'ev D.E., Zaykova E.V. (2018). [Nature of microinclusions of chrome spinel in grains of platinum group metals from gold placers in the South Urals]. Zapiski RMO [roceedings of the Russian Mineralogical Society], (5), 27–40. (in Russian).

Zaykov V.V., Tairov A.D., Zaikova E.V., Yuminov A.M., Kotlyarov V.A. (2016B) [Precious metals in ores and ancient gold products of Central Eurasia]. Chelyabinsk, Kamennyi poyas, 314 p. (in Russian).

Статья поступила в редакцию 13 января 2020 г.