КРАТКИЕ ЗАМЕТКИ / BRIEF REPORTS

УДК 549.642 (470.54)

DOI: 10.35597/2313-545X-2021-7-2-4

ЗЕЛЕНЫЙ ДИОПСИД С ФИОЛЕТОВОЙ ГОЛОВКОЙ ИЗ БАЖЕНОВСКОГО МЕСТОРОЖДЕНИЯ ХРИЗОТИЛ-АСБЕСТА НА СРЕДНЕМ УРАЛЕ

В.А. Попов

Южно-Уральский федеральный научный центр минералогии и геоэкологии УрО РАН, Институт минералогии, г. Миасс Челябинская обл., 456317 Россия; popov@mineralogy.ru

Статья поступила в редакцию 4.05.2021 г., принята к печати 12.05.2021 г.

GREEN DIOPSIDE WITH MAUVE TERMINATION FROM THE BAZHENOVSKOE CHRYSOTILE-ASBESTOS DEPOSIT, CENTRAL URALS

V.A. Popov

South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Institute of Mineralogy, Miass, Chelyabinsk oblast, 456317 Russia; popov@mineralogy.ru

Received 4.05.2020, accepted 12.05.2021

Аннотация. Некоторые генерации диопсида из родингитовых (скарновых?) жил Баженовского месторождения хризотил-асбеста имеют сложную историю кристаллизации с образованием зональносекториальных полихромных кристаллов. Приведен один из примеров такого диопсида, цвет которого определяется соотношением концентраций марганца и железа в разных элементах анатомии кристалла. Так, зеленый цвет наблюдался в пирамидах нарастания граней {100}, {010}, {001}, {310}, а фиолетовый цвет – {831} и {22 1}. В элементах анатомии красного цвета фиксируется максимальное содержание Mn.

Ключевые слова: диопсид, форма и анатомия кристаллов, парагенезисы.

Abstract. Some generations of diopside from rodingite (skarn?) veins of the Bazhenovskoe chrysotileasbestos deposit have complex crystallization evolution with the formation of zonal-sectorial polychrome crystals. The paper considers one example of diopside, the color of which is caused by Mn/Fe ratio in different elements of crystal anatomy. For example, the green color is typical of growth pyramids of faces {100}, {010}, {001}, {310}, whereas mauve color is observed in those of {831} and {22 I}. The anatomy elements of red color exhibit maximum Mn contents.

Keywords: diopside, crystal shape and anatomy, parageneses.

Для цитирования: Попов В.А. Зеленый диопсид с фиолетовой головой из Баженовского месторождения хризотил-асбеста на Среднем Урале. Минералогия, 7(2), 78–81. DOI: 10.35597/2313-545X-2021-7-2-4.

For citation: Popov V.A. A mauve-head green diopside from the Bazhenovskoe chrysotile-asbestos deposit, Central Urals. Mineralogy, 7(2), 78–81. DOI: 10.35597/2313-545X-2021-7-2-4.

Введение

Минералогии Баженовского месторождения хризотил-асбеста на Среднем Урале посвящено множество статей и монографий (например, Антонов, 2003; Лоскутов, Новгородова, 2013; Ерохин, 2017). В них большое внимание уделено родингитовой минерализации и, в частности, полигенерационному диопсиду. Наиболее полно состав и форма диопсида охарактеризована в монографиях А.А. Антонова (2003) и Ю.В. Ерохина (2017). В них представлено 12 кристаллов диопсида с разным набором простых форм и (или) соотношением площадей их граней. По идеализированным (на чертежах) формам можно представить облик кристаллов диопсида как короткостолбчатый (слабо удлинен по оси [001]) или таблитчатый (параллельно граням {100}); один кристалл удлинен параллельно двойной оси [010]. На фотографиях в монографии Ю.В. Ерохина (2017) приведены некоторые друзы диопсида, представленные столбчатыми (длиннопризматическими) кристаллами. Некоторые цветные иллюстрации друз диопсида содержат зональные полихромные кристаллы с бесцветными, зелеными и участками, цвет которых имеет разную интенсивность и множество оттенков (розовый, фиолетовый, коричневый, серый). Анатомическое устройство кристаллов при внешнем описании остается недостаточно охарактеризованным для понимания онтогенеза минерального индивида и использования его характеристик в физико-химическом моделировании. Ниже приведен пример дополнительных анатомических данных, полученных для полихромного кристалла диопсида Баженовского месторождения (коллекция Л.А. Чешко).

Характеристика изученного кристалла диопсида

Изученный кристалл изъят из мономинеральной друзы полихромного диопсида (рис. 1). Друза представлена разновеликими и разноориентированными индивидами диопсида с частично проявленным геометрическим отбором. В агрегате видны следы некоторого дробления и регенерации кристаллов, вследствие чего кристаллы и обломки расположены асимметрично. На многих кристаллах видны буровато-зеленые нижние части и фиолетовые головки (рис. 2). Общее огранение, составленное по измерениям нескольких кристаллов, выглядит как комбинация простых форм {100},

Рис. 1. Фрагмент друзы кристаллов полихромного диопсида размером 2 × 3 см.

Фото Т. Пашко.

Fig. 1. Fragment of a polychrome diopside crystal druse 2×3 cm in size.

Photo by T. Pashko.

Рис. 2. Кристалл полихромного диопсида (фрагмент рис. 1).

Fig. 2. Polychrome diopside crystal (fragment of Fig. 1).

МИНЕРАЛОГИЯ/ MINERALOGY 7(2) 2021

Puc. 3. Форма кристаллов полихромного диопсида. *Fig. 3.* Morphology of polychrome diopside crystals.

Рис. 4. Анатомия головки кристалла полихромного диопсида.

Случайное сечение. СЭМ фото.

Fig. 4. Anatomy of crystal termination of polychrome dio-pside.

Random section. SEM photo.

Таблица

Химический состав диопсида по элементам анатомии (мас. %)

Chemical composition of diopside (wt. %)

Table

				1	1	· · ·		
№ п/п	Анализ	MgO	Al ₂ O ₃	SiO ₂	CaO	MnO	FeO	Сумма
1	r	16.51	0.26	54.64	26.13	0.49	1.52	99.55
2	S	15.53	—	54.45	25.75	1.09	2.61	99.43
3	t	16.92	0.60	54.68	26.45	0.30	1.00	99.95
4	u	14.54	—	53.91	25.92	1.90	3.68	99.94

 $\{010\}, \{001\}, \{310\}, \{831\}$ и $\{22\overline{1}\}$; облик кристалла короткостолбчатый (рис. 3).

Под бинокуляром при увеличении и косом освещении видно, что переход от нижней зеленой к верхней красной части кристалла резкий со сменой форм: зеленая часть заканчивается большим по площади базопинакоидом (001), на котором расположено несколько трансляционных вершинных форм красного цвета. Выше трансляционные вершинные формы сливаются в единую форму {831} + $\{22 T\}$, пирамиды нарастания которой состоят из фиолетовых и бесцветных зон. Положение грани (001) легко определяется отдельностью по $\{001\}$, возникающей при пластических деформациях кристалла.

Анатомическое строение головки кристалла хорошо видно под электронным микроскопом (рис. 4). В кристаллах диопсида установлены микровростки гроссуляра, а также разные концентрации примесных элементов (Mn, Fe) в разных секторах роста (пирамиды нарастания) (рис. 4, табл.). На СЭМ фото (рис. 4) более светлые зоны (анализы u, s) и участки в пирамидах нарастания граней $\{831\}$ и $\{22\overline{1}\}$ обогащены Fe и Mn. Внешне они выглядят фиолетовыми с разными оттенками и плотностью окраски. В пирамидах нарастания граней $\{001\}$ и $\{100\}$ не видно резкой зональности и общий уровень примесных Fe и Mn значительно ниже (анализы r, t).

Заключение

Таким образом, в изученном кристалле выделяются два периода роста: ранний, когда он имел субизометричную форму с большой гранью (001) и буровато-зеленый цвет, и поздний – с образованием фиолетовой головки. Фиолетовый цвет наблюдался только в пирамидах нарастания граней {831} и $\{22\bar{1}\}$, остальные пирамиды нарастания почти бесцветны. Из минералов парагенезиса диопсида установлены только включения гроссуляра. Друза кристаллов диопсида формировалась в полости и не принадлежит метасоматическому минералообразованию, которое приписывается родингитам как метасоматитам. Парагенезис диопсида формально соответствует скарновой минеральной формации. Дополнительные данные по анатомии кристаллов диопсида позволяют получить информацию о смене их формы во времени, о разном химическом составе зон роста и пирамид нарастания граней разных простых форм, что необходимо учитывать при физико-химическом и кристаллохимическом моделировании процессов минералообразования в их динамике.

Автор благодарен Л.А. Чешко за предоставление образца диопсида из Баженовского месторождения и М.А. Рассомахину за определение химического состава диопсида на растровом электронном микроскопе Tescan Vega 3.

Литература

Антонов А.А. (2003) Минералогия родингитов Баженовского гипербазитового массива. СПб, Наука, 128 с.

Ерохин Ю.В. (2017) Минералогия родингитов Баженовского месторождения (Средний Урал). *Минералогический Альманах*, **22**(3), 136 с.

Лоскутов А.Б., Новгородова Е.А. (2013) Минералы. Баженовское месторождение хризотил-асбеста. Екатеринбург, Уральский рабочий, 340 с.

References

Antonov A.A. (2003) [Mineralogy of rodingites of the Bazhenovskoe ultramafic massif]. St-Petersburg, Nauka, 128 p. (in Russian)

Erokhin Yu.V. (2017) [Mineralogy of rodingites of the Bazhenovskoe deposit (Central Urals)]. *Mineralogichesky almanakh [Mineralogical Almanac]*, **22**(3), 136 p. (in Russian)

Loskutov A.B., Novgorodova E.A. (2013) Minerals. Bazhenovskoe deposit of chrysotile-asbestos. Yekaterinburg, Ural'sky rabochiy, 340 p. (in Russian)