Hydroxylapatite of bone tissue: dynamics of crystallochemical alterations upon osteoporosis
A.A. Bibko, O.V. Bukharova, E.A. Kostrub, A.G. Miroshnichenko, M.V. Korovkiн
UDK 549.01:549.02:549.752:553.086 | https://doi.org/10.35597/2313-545X-2023-9-4-6 | Read PDF (RUS) |
Bone tissue is a physiogenic organomineral aggregate consisting of organic (collagen, fats, sugars) and mineral (hydroxlyapatite) components. Osteoporosis is one of the most common bone diseases leading to disruption of bone tissue mineralization processes. To study the dynamics of changes in
hydroxylapatite during osteoporosis, an experiment was conducted on laboratory animals with the simulation of systemic osteoporosis using ovariectomy (the surgical removal of an ovary or ovaries). The chemical composition of the mineral component of bone tissue was studied using electron microprobe analysis with further statistical processing of the results. The osteoporosis of bone tissue results in an increase in the content of isomorphic Mg, Al, and K in hydroxylapatite. A signifcant role of Al in the development of the disease was established using multivariate statistics methods. The X-ray diffraction revealed the increase in the unit cell parameters of hydroxylapatite with the osteoporosis progression. The results of IR spectroscopy showed the presence of a carbonate group in hydroxylapatite, the content of which decreases with disease.
Keywords: hydroxylapatite, bone tissue, osteoporosis, biomineral, structural and chemical characteristics.
Received 10.11.2023, accepted 08.12.2023
A.A. Bibko, National Research Tomsk State University,Tomsk, Russia; bibko.geology@gmail.com
O.V. Bukharova, National Research Tomsk State University, Tomsk, Russia;
E.A. Kostrub, Siberian State Medical University, Tomsk, Russia;
A.G. Miroshnichenko, South Ural State Medical University, Chelyabinsk, Russia;
M.V. Korovkin, National Research Tomsk State University, Tomsk, Russia;
National Research Tomsk Polytechnic University, Tomsk, Russia
- Basle M.F., Rebel A., Mauras Y., Allain P., Audran M., Clochon P. (1990) Concentration of bone elements in osteoporosis. Journal of Bone and Mineral Research, 5(1), 41–47.
- Chaikina M.V., Bulina N.V. Ishchenko A.V., Prosanov I.Yu. (2016) [Study of the process of replacing phosphate with aluminate in the structure of hydroxylapatite during mechanochemical synthesis and annealing]. Khimiya v interesakh ustoychivogo razvitiya [Chemistry for Sustainable Development], 24(5), 669–678. (in Russian).
- Casarrubios L., Gomez-Cerezo N., Sanchez-Salcedo S., Feito M., Serrano M., Saiz-Pardo M., Ortega L., de Pablo D., Diaz-Guemes I., Fernandez-Tome B., Enciso S., Sanchez-Margallo F., Portoles M., Arcos D., Vallet-Regi M. (2020) Silicon substituted hydroxyapatite/ VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta biomaterialia, 101, 544–553.
- Chang M.C., Tanaka J. (2002) FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 23(24), 4811–4818.
- Chappard D., Bizot P., Mabilleau G., Hubert L. (2016) Aluminum and bone: Review of new clinical circumstances associated with Al3+ deposition in the calcifed matrix of bone // Morphologie, 100(329), 95-105.
- Clarkson D.T., Sanderson J. (1971) Inhibition of the uptake and long-distance transport of calcium by aluminium and other polyvalent cations. Journal of Experimental Botany, 22(4), 837–851.
- Cournot-Witmer G., Zingraff J., Plachot J. (1981) Aluminum localization in bone from hemodialyzed patients: relationship to matrix mineralization. Kidney International, 20(3), 375–385.
- Ebeling P., Daly R., Kerr D., Kimlin M. (2013) Building healthy bones throughout life: an evidence-informed strategy to prevent osteoporosis in Australia. Medical Journal of Australia, 2(S1), 1–9.
- Elliott J.C. (2002) Calcium phosphate biominerals. Reviews in Mineralogy and Geochemistry, 48(1), 427–453.
- Glimcher M.J. (1960) Specifcity of the molecular structure of organic matrices in mineralization. Calcifcation in Biological Systems, 421487.
- Glimcher M.J. (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Reviews in Mineralogy and Geochemistry, 64(1), 223–282.
- Godovikov A.A. (1975) [Mineralogy]. Moscow, Nedra, 520 p. (in Russian).
- Grunenwald A., Keyser C., Sautereau A., Crubezy E., Ludes B., Drouet C. (2014) Revisiting carbonate quantifcation in apatite (bio) minerals: a validated FTIR methodology. Journal of Archaeological Science, 49, 134– 141.
- Hunter G.K., Goldberg H.A. (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proceedings of the National Academy of Sciences, 90(18), 8562–8565.
- Hunter G.K., Hauschka P., Poole A., Rosenberg L., Goldberg H.A. (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochemical Journal, 317(1), 59–64.
- Korago A.A. (1992) [Introduction to biomineralogy]. St. Petersburg, Nedra, 280 p. (in Russian)
- Komori T. (2015) Animal models for osteoporosis. European Journal of Pharmacology, 759, 287–294.
- Kono T., Sakae T., Nakada H., Kaneda T., Okada H.(2022) Confusion between carbonate apatite and biological apatite (carbonated hydroxyapatite) in bone and teeth. Minerals, 12(2), 170.
- Kourkoumelis N., Balatsoukas I., Tzaphlidou M.(2012) Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. Journal of biological physics, 38, 279–291.
- Legros R., Balmain N., Bonel G. (1987) Agerelated changes in mineral of rat and bovine cortical bone. Calcifed Tissue International, 41, 137–144.
- Meunier P., Roux C., Seeman E., Ortolani S., Badurski J., Spector T., Cannata J., Balogh A., Lemmel E., Pors-Nielsen S., Rizzoli R., Genant H., Reginster J. (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. New England Journal of Medicine, 350(5), 459–468.
- Mikhailova N.N., Yadykina T.K., Bugaeva M.S., Danilov I.P., Semenova E.A., Doroshilov A.V., Kilina L.P., Zhukova A.G. (2019) [Clinical and experimental studies of the state of bone tissue in fuorosis]. Meditsina truda i promyshlennaya ekologiya [Occupational
- Medicine and Industrial Ecology], 59(6), 364–370. (in Russian).
- Posner A.S. (1969) Crystal chemistry of bone mineral. Physiological reviews, 49(4), 760–792.
- Posner A.S., Blumenthal N.C., Betts F. (1984) Chemistry and structure of precipitated hydroxyapatites. Phosphate minerals, 330–350.
- Rachner T.D., Khosla S., Hofbauer L.C. (2011) Osteoporosis: now and the future. The Lancet, 377(9773), 1276–1287.
- Reginster J., Seeman E., De Vernejoul M., Adami S., Compston J., Phenekos C., Devogelaer J., Curiel M., Sawicki A., Goemaere S., Sorensen O., Felsenberg D., Meunier P. (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. The Journal of Clinical Endocrinology & Metabolism, 90(5), 2816–2822.
- Shi J., Klocke A., Zhang M., Bismayer U. (2005) Thermally-induced structural modifcation of dental enamel apatite: Decomposition and transformation of carbonate groups. European Journal of Mineralogy, 17(5), 769–776.
- Simon P., Rosseeva E., Buder J., Carrillo-Cabrera W., Kniep R. (2009) Embryonic states of fuorapatite–gelatine nanocomposites and their intrinsic electric feld-driven morphogenesis: the missing link on the way from atomistic simulations to pattern formation on the mesoscale. Advanced Functional Materials, 19(22), 3596–3603.
- Skoblin A.P., Belous A.M. (1968) [Microelements in bone tissue]. Moscow, Meditsina, 232 p. (in Russian).
- Suvorova E.I., Petrenko P.P., Buffat P.A. (2007) Scanning and transmission electron microscopy for evaluation of order/disorder in bone structure. Scanning: The Journal of Scanning Microscopies, 29(4), 162–170.
- Trapp G.A. (1983) Plasma aluminum is bound to transferrin. Life Sciences, 33(4), 311–316.
- Ward J. (1963) Hierarchical Grouping to Optimize an Objective Function // Journal of the American Statistical Association, 58(301), 236-244.
- Ward J. (1963) Hierarchical Grouping to Optimize an Objective Function // Journal of the American Statistical Association, 58(301), 236-244.
- Zoroddu M., Aaseth J., Crisponi G., Medici S., Peana M., Nurchi V. (2019) The essential metals for humans: a brief overview. Journal of inorganic biochemistry, 195, 120–129.
MINERALOGY 4 2023