Sulfate mineralization in a tunnel of the Pyatigorsky proval cave, North Caucasus
O.Ya. Chervyatsova, A.V. Kasatkin, N.V. Chukanov, F. Nestola
UDK 549.76 (470.63) | https://doi.org/10.35597/2313-545X-2021-7-1-6 | Read PDF (RUS) |
The paper reports on the results of studies of supergene sulfate mineralization found in a tunnel of the Pyatigorskiy Proval cave. The sulfate minerals include humberstonite K3Na7Mg2(SO4)6(NO3)2·6H2O, sid-eronatrite Na2Fe(SO4)2(OH)·3H2O, metasideronatrite Na2Fe(SO4)2(OH)·H2O, natrojarosite NaFe3(SO4)2(OH)6, tamarugite NaAl(SO4)2·6H2O, and epsomite MgSO4·7H2O, which were identifed by electron probe micro-analysis, powder X-ray difraction and infrared spectroscopy. The presence sulfate sulfur can be related to both the oxidation of sulfde grains, which were found in some samples, and the oxidation of gaseous H2S air oxygen. Humberstonite and metasideronatrite are found for the frst time in Russia.
Keywords: sulfates, Pyatigorsky Proval cave, hypogene karst, humberstonite, sideronatrite, metasidero-natrite, natroyarosite, tamarugite, epsomite.
Received 10.11.2020, accepted 28.02.2021
O.Ya. Chervyatsova, State Natural Reserve Shulgan-Tash, Zapovednaya 14, Irgyzly, Republic of Bashkortostan, 453585 Russia; kittary@yandex.ru
A.V. Kasatkin, Fersman Mineralogical Museum of RAS, Leninskiy Pr. 18/2, Moscow, 119071 Russia
N.V. Chukanov, Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow oblast, 142432 Russia
F. Nestola, Department of Geosciences, University of Padova, Via G. Gradenigo 6, Padova, 35131 Italy
- Ara D., Sanna L., Rossi A., Galli E., De Waele J. (2013) Minerali secondari in ambiente sotterraneo: la miniera dell’Argentiera (Sardegna nord-occidentale). EUT Edizioni Universita di Trieste, 290–295.
- Benavente D., Pla C., Elena-Carbonell J. M., Spairani Y., Grossi C. M. (2018). Intensive damage due to salt crystallisation by rising damp in the Colegio Santo Domingo of Orihuela (Spain). Conserving Cultural Heritage: Proceedings of the 3rd International Congress on Science and Technology for the Conservation of Cultural Heritage (Techno Heritage 2017), 273–275.
- Bessonov I.V., Baranov V.V. (2014) [Reasons for the formation and remedy of eforescence on building brick walls]. Zhilishchnoe stroitelstvo [Housing construction], 7, 39–43. (in Russian)
- Bondareva G.L. (2011) [Hydrogeodynamic and hydrogeochemical features of Pyatigorsk mineral water deposit]. Abstract of Dissertation of Candidate of Geologi-cal-Mineralogical Sciences. Perm, 24 p. (in Russian)
- Chervyatsova O.Y., Potapov S.S., Kuzmina L.Y., Dublyansky Y.V., Sadykov S.A., Kiseleva D.V., Okuneva T.G., Dzhabrailov S.М., Samokhin G.V. (2020). Sulfuric acid speleogenesis in the North Caucasus: Sharo-Argun valley Caves (Chechen Republic, Russia). Geomorphology, 369, 107346.
- Chou I.M., Seal R.R. (2003) Determination of epsomite – hexahydrite equilibria by the humidity bufer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4–H2O. Astrobiology, 3, 619–630.
- D’Angeli I.M., Carbone C., Nagostinis M., Parise M., Vattano M., Madonia G., De Waele J. (2019) New insights on secondary minerals from Italian sulfuric acid caves. International Journal of Speleology, 47(3), 271–291.
- Dublianskiy V.N., Kiknadze T.Z. (1984) [Karst hydrogeology of the Alpine fold region of the southern part of the USSR]. Moscow, Nauka, 125 p. (in Russian)
- Eckardt F.D., Drake N. (2011) Introducing the Namib desert playas. Sabkha Ecosystems, 3. Springer, Africa and Southern Europe. Dordrecht, 19–25.
- Fitzpatrick R., Shand P., Raven M., McClure S. (2010) Occurrence and environmental signifcance of sideronatrite and other mineral precipitates in Acid Sulfate Soils. 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6.
- Forti P., Panzica La Manna M., Rossi A. (1996). The peculiar mineralogical site of the Alum cave (Vulcano, Sicily). 7th International Symposium on Vulcanospeleology, Canarie 1994, 35–44.
- Harmon R.S., Atkinson T.C., Atkinson J.L. (1983) The mineralogy of Castleguard cave, Columbia Icefelds, Alberta, Canada. Arctic and Alpine Research, 15(4), 503– 516.
- Khaustov V.V. (2013) [Model of the formation of carbon dioxide fuids in the Greater Caucasus and peculiarities of its deep geodynamics]. Electronnoye nauchnoe izdanie Almanakh prostranstvo i vremya [Electronic scientifc publication Almanac Space and Time], 4(1), 2227-9490e-aprovr_e-ast4-1.2013.24 (in Russian)
- Klimchouk A.B. (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. National Cave and Karst Research Institute, Special Paper 1, Carlsbad, 106 p.
- Laghi T. (1806) Di un nuovo sale fossile scoperto nel bolognese. Memorie Istituto Nazionale Italiano, 1(1), 19– 26.
- Lavrishchev V.А., Grekov I.I., Semenov V.M., Ermakov V.А. et al. (2011) [State geological map of the Russian Federation, scale 1 : 1 000 000 (third generation). Scythian series. Sheet L-38. Pyatigorsk. Explanatory note]. St. Petersburg, Kartografcheskaya fabrika VSEGEI, 420 p. (in Russian)
- Lazaridis G., Melfos V., Papadopoulou L. (2011). The frst cave occurrence of orpiment (N. Greece). International Journal of Speleology, 40(2), 133–139.
- Lombardi G., Sposato A. (1981) Tamarugite from Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 19(3), 403–407.
- Matysek D., Jirasek J., Osovsky M., Skupien P. (2014). Minerals formed by the weathering of sulfdes in mines of the Czech part of the Upper Silesian Basin. Mineralogical Magazine, 78(5), 1265–1286.
- Mrose M.E., Fahey J.J. Ericksen G.E. (1970): Mineralogical studies of the nitrate deposits of Chile. III. Humberstonite, K3Na7Mg2(SO4)6(NO3)2·6H2O, a new saline mineral. American Mineralogist, 55, 1518–1533.
- Nevskaya T.A. (2015) [Monuments and memorable places of the imperial period as a historical and cultural brand of Stavropol’e]. In: Kulturno-poznavatel’ny turizm yuga Rossii kak stratigicheskii resurs ukrepleniya rossiyskoy gosudarstvennosti [Cultural and educational tourism in the southern part of Russia as a strategic resource for strengthening Russian statehood]. Novorossiysk, Juzhnyy flial Rossiyskogo nauchno-issledovatel?skogo instituta kul?turnogo i prirodnogo naslediya im. D.S. Lichacheva, 224–232. (in Russian)
- Onac B.P., Puscas C.M., Efenberger H.S., Povara I., Wynn J.G. (2013). The hypogene origin of Diana Cave (Romania) and its sulfuric acid weathering environment. Proceedings of the 16th International Congress of Speleology. Brno, Czech Republic. Vol. 3, 470–473.
- Ordonez S., La Iglesia A., Louis M., Garcia-del-Cura M.A. (2016). Mineralogical evolution of salt over nine years, after removal of eforescence and saline crusts from Elche’s Old Bridge (Spain). Construction and Building Materials, 112 , 343–354.
- Palmer A.N. (2016) The Mammoth cave system, Kentucky, USA. Boletin Geologico y Minero, 127(1), 131– 145.
- Polyak V.J., Provencio P. (2001) By-product materials related to H2S–H2SO4 infuenced speleogenesis of Carlsbad,Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studie, 63(1), 23– 32.
- Proskurnia Yu.А. (2019) [Mineralogical study of Donbass]. Innovatsionnye perspektivy Donbassa [Innovative perspectives of Donbass]. Donetsk, DonNTU, 151–154.
- Rodgers K.A., Hamlin K.A., Browne P.R.L., Campbell K.A., Martin R. (2000). The steam condensate alteration mineralogy of Ruatapu cave, Orakei Korako geothermal feld, Taupo Volcanic Zone, New Zealand. Mineralogical Magazine, 64(1), 125–142.
- Tamas T., Kristaly F., Barbu-Tudoran L. (2011) Mineralogy of Iza Cave (Rodnei Mountains, N. Romania). International Journal of Speleology. 40(2), 171–179.
- Tang Y. (2005). Nonmetallic deposits of Xinjiang, China [Zhongguo Xinjiang Fei Jinshu Kuangchuang]. Geological Publishing House (Beijing), 289 p.
- Vakhrushev B.A. (2009). Peculiar features of hypogene speleogenesis in the folded mountain region of the Western Caucasus. Hypogene speleogenesis and karst hydrogeology of artesian basins. Ukrainian Institute of Speleology and Karstology, Special Paper 1 (Klimchouk A.B. and Ford D.C, eds.), 271–274.
- Valentino G.M., Cortecci G., Franco E., Stanzione D. (1999) Chemical and isotopic compositions of minerals and waters from the Camp Flegrei volcanic system, Naples, Italy. Journal of Volcanology and Geothermal Research, 91, 329–344.
- Ventruti G., Scordari F., Della Ventura G., Bellatreccia F., Gualtieri A. F., Lausi A. (2013). The thermal stability of sideronatrite and its decomposition products in the system Na2O–Fe2O3–SO2–H2O. Physics and Chemistry of Minerals, 40(8), 659–670.
- Vettori S., Bracci S., Cantisani E., Riminesi C., Sacchi B., D’Andria F. (2016). A multi-analytical approach to investigate the state of conservation of the wall paintings of Insula 104 in Hierapolis (Turkey). Microchemical Journal, 128, 279–287.
- Wray R.A.L. (2011) Alunite formation within silica stalactites from the Sydney Region, South-Eastern Australia. International Journal of Speleology, 40(2), 109–116.
- Zambonini F. (1907) Su alcuni minerali della Grotta dello Zolfo a Miseno. Rendiconti Academia delle Scienze, 3(46), 324–331.
MINERALOGY № 1 2020